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Abstract

While recent developments undoubtedly demonstrate the power of deep learning,
we still lack a fundamental understanding of why overparameterized models work
so well in practice. A common explanation attributes this phenomenon to implicit
regularization induced by first-order optimization techniques like SGD. However,
recent work has found that even zeroth-order guess-and-check optimizers very fre-
quently find well generalizing minima. In this work, we mathematically formulate this
heuristic, known as the volume hypothesis. We then fully establish existing research
ideas which, using a tropical geometric perspective, introduce a dual representation of
fully connected feedforward ReLU networks. This abstraction offers a perspective for
studying the volume hypothesis which, to the best of our knowledge, is novel. While
deriving general results remains challenging, we analyze multiple lower-dimensional
examples, some inspired by Telgarsky’s sawtooth construction, which support the vol-
ume hypothesis. In particular, using the tropical geometric framework, we argue that
exponentially complex minima in the loss landscape are unstable, leading learning
algorithms to converge to solutions where the network does not fully utilize its avail-
able expressivity. Our work provides a novel perspective to think about generalization
of deep ReLU networks, and we hope to inspire further theoretical and empirical re-
search to establish more general results. The code for this project can be found at
https://github.com/phnazari/geomgen.
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Notation

The following table contains a (non-exhaustive) selection of the most frequently used
notation. We provide links to formal definitions for non generic symbols.

Notation Description
N The set of natural numbers {1, 2, 3, . . . }
N0 The set of natural numbers including 0
[m : n] The set {m,m+ 1, . . . , n} for m,n ∈ N0

v Multi-dimensional vector
vT Transpose of a vector v
(x, y) Point in Rd+1 with x ∈ Rd and y ∈ R
⟨·, ·⟩ Euclidean inner product
∥ · ∥ Norm of a vector or function
∥ · ∥2 Euclidean norm
∼−→ Bijection
| · | Cardinality of a set
A Matrix
Ai: i’th row of matrix A
x+ max(0, x)
x− max(0,−x)
N (µ, σ2) Gaussian distribution
U(S) Uniform distribution over the set S
Hn n’th Harmonic number

∑k
i=1

1
k

f ∼ g The functions f and g are asymptotically equivalent, limn→∞
f(n)
g(n)

= 1

g = O(f) There exist constants C > 0 and N ∈ N such that |g(n)| ≤ C|f(n)| for
all n ≥ N

g = Θ(n) There exist constants c1, c2 > 0 and N ∈ N such that c1f(n) ≤ g(n) ≤
c2f(n) for all n ≥ N

⊔ Disjoint union
⊞ Sum of a scalar and a set of vectors, Definition 5.1.5
⊕ Tropical addition, Definition 4.1.1
⊙ Tropical multiplication, Definition 4.1.1
⊘ Tropical quotient, Definition 4.1.6
⊠ Minkowski sum
fa,b Affine map fa,b(x) = ⟨a,x⟩+ b
ρt(·) The function max(·, t)
N Fully connected ReLU network, see Definition 2.1.1
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c Complexity measure for neural network N , for example number of
affine regions or linear pieces in decision boundary

B Decision boundary of a binary classification network, Definition 2.1.7
L Depth of neural network
d Input dimension for neural network
ni Width of layer i = 1, . . . , L of neural network
∇ Gradient operator
(x, y) ∈ f (x, y) lies on the graph of f , Definition 2.2.1
(x, y) ≻ f (x, y) lies above the graph of f , Definition 2.2.1
affhul(X) Affine hull of X , the smallest affine space containing X
C(X) Convex hull of X
U(X) Upper convex hull of X , Definition 2.3.4
Uk(X) k-skeleton of U(X), Definition 2.3.4
U∗(X) Upper convex hull vertices of X , Definition 2.3.4
f∥U(X) Affine function f is tangent to the upper convex hull of X , Defini-

tion 6.1.5
CPA Convex and piecewise affine function
DCPA Difference of convex and piecewise affine functions
CPA(d) Set of CPA functions Rd → R
DCPA(d) Set of DCPA functions Rd → R
Q(S) CPA function induced by a set S of dual points, Definition 3.3.1
T (F ) Tessellation induced by CPA function F , Definition 3.4.1
Tk(F ) k-skeleton of T (F ), Definition 3.4.3
T (S) Tessellation induced by a CPA function Q(S)
T (P,N) Tessellation induced by the DCPA function Q(P ) − Q(N), Defini-

tion 3.4.5
(Pl, Nl) Dual representation of Q(PL)−Q(NL) up to layer l, Corollary 5.1.8
σ Cell in T (F )
ζ Face in Q(S)
P(P ⊠N) Set of paths of dual points, Definition 7.1.6
P(P,N) Set of paths of d-cells, Definition 7.1.4
|Σ| Support of a polyhedral complex Σ, Definition 2.3.5
R Real space, Page 19
D Dual space, Page 19
AffR(d) Real affine space, Page 19
AffD(d) Dual affine space, Page 19
R Bijection between D and AffR(d), Lemma 3.2.1
Ř Bijection between R and AffD(d), Lemma 3.2.3
SI Given an index-set I and an indexed set S, SI := {si

∣∣ i ∈ I}
A= Set of implicit equality constraints of a polynomial {Ax ≥ b}, Defi-

nition 2.3.7
Aσ Inequality constraints defining a cell σ, Remark 6.1.2
fm Mirror-map, Definition 8.1.3
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Chapter 1

Introduction

Conventional learning theory predicts overparameterized deep neural networks to
overfit the training data. Yet, that effect is not observed in practice [1, 2]. This phe-
nomenon was long attributed to implicit regularization induced by first order op-
timization techniques like SGD, which bias the network towards well-generalizing
minima [3, 4, 5]. However, Chiang et al. [6] show, using a zeroth order optimization
technique, that this implicit regularization is not necessary for finding such minima.
Instead, they argue that the generalization ability depends solely on the structure of
the loss-landscape.

Valle-Pérez et al. [7] heuristically link generalization to the simplicity of a network,
arguing that our physical universe is “simple“, and therefore any training algorithm
should favor simple hypotheses over complex ones in order to accurately capture the
true rule of the universe (i.e., to generalize). In addition to this heuristic argument, it
seems intuitive that a large capacity allows deep models to overfit to noise, leading
to poor generalization error. The tendency of learning algorithms to prefer simple
optima, even when the model could overfit the data, is called “simplicity bias“ [2, 8, 9,
10].

More specifically, the maximum number of affine regions of a ReLU networks is
known to grow exponentially in depth and polynomially in width [11, 12, 13, 14]. Tel-
garsky [15] further demonstrated the representational benefits of depth by construct-
ing a deep, narrow network that achieves an exponential (in the number of layers)
number of affine regions. This construction enables correct classification of a hand-
crafted dataset that any shallow network that is not very wide fails to classify.

This raises the question: do all networks exhibit an exponential number of affine re-
gions? To answer this question, it is important to note that Telgarsky achieved expo-
nential expressivity through a carefully designed recursive architecture. In practice,
Hanin and Rolnick [16] show that, at initialization, the number of affine regions grows
linearly with the number of neurons along any one-dimensional subspace, and thus
polynomially per volume of input-space [14]. Crucially, they demonstrate that neu-
ral networks, in practice, do not realize the full exponential complexity theoretically
available (further discussed in Section 1.2).
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In this work we propose a new perspective on the simplicity bias, and thus on gen-
eralization capabilities of deep networks, using a geometric argument. Specifically,
we study the “Volume Hypothesis“ [6], which states that well generalizing minima
occupy larger volumes (i.e., are more flat) in parameter space than badly generalizing
ones.

Before diving into more details on our contribution, we introduce the volume hypoth-
esis more rigorously. By randomly sampling networks until finding one with 100%
training accuracy, Chiang et al. [6] show (in the setting of binary classification) that
the majority of the resulting networks are simple and generalize well. This leads them
to attribute the simplicity bias solely to the geometry of the loss landscape, indepen-
dent of the first order regularization induced by SGD. They coin their observation the
Volume Hypothesis:

“[...] generalizing minima occupy a much larger volume than poorly gen-
eralizing minima in neural loss functions, and [...] this volume disparity
alone is enough to explain generalization [...]” [6, p.2].

In order to make this argument mathematically more rigorous, assume the network
parameters are drawn i.i.d. from a probability distribution, in practice a Gaussian.
Given a dataset D ⊆ Rd, let E be the event that all training samples are classified
correctly by a network N .

Let furthermore c be a complexity measure forN (e.g., the number of linearly pieces in
the decision boundary of a ReLU classifier or the number of affine regions in a ReLU
regression network).

To study the volume hypothesis, we are interested in the posterior density P(c|E =
1) of the complexity given that the network achieves 100% training accuracy. Using
Bayes’ rule, this density can be re-written as

P(c|E = 1) =
P(E = 1|c)P(c)

P(E)
∼ P(c)χE=1.

In other words, the posterior density of the complexity at a minimum of the loss land-
scape is proportional to the volume of the complexity in parameter space.

In this work, we focus our attention on fully connected, feedforward ReLU networks,
which allows leveraging tropical geometry (Section 2.3.1) to derive a dual representa-
tion of the network. This representation enables us to identify the networks with the
upper convex hull of two sets of points (“dual points“, Proposition 5.1.7). As a result,
instead of directly analyzing deep ReLU networks, we can shift our focus to better
understanding upper convex hulls and their complexity (Chapters 8-10).

As a complexity measure, we use the number of affine regions in the setting of regres-
sion (as in [11, 12, 13, 17]) and the number of linear pieces in the decision boundary in
the setting of classification (as in [18]). Those two quantities can be directly tied to the
dual representation: the number of linear pieces in the decision boundary corresponds
to the number of a specific kind of edge in an upper convex hull (Theorem 6.1.7), and
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the number of linear pieces corresponds to the number of vertices in another upper
convex hull (Theorem 7.0.5).

Abstracting away from ReLU networks to upper convex hulls using the dual repre-
sentation, the distribution of weights and biases induces a distribution of dual points.
However, the distribution of the dual points is generally intractable, as the marginal
distributions of each point are highly interdependent. To address this issue, we focus
on studying a variety of simpler, low-dimensional problems. For instance, in Chapter 8
we derive the dual representation of Telgarsky’s construction [15]. In Chapter 9, we
investigate the effect of adding a one-dimensional ReLU layer with Gaussian weights
and biases to an existing deterministic network, using dual representations inspired by
our previous analysis of Telgarsky’s sawtooth network. Here, we show that the prob-
ability of increasing the networks complexity by adding the random layer decreases
as the starting network becomes more complex (Proposition 9.4.3). Additionally, we
show that the expected marginal gain in complexity is expected to decrease (Corol-
lary 9.4.13).

The primary contribution of this work is to provide strong evidence for the volume
hypothesis in simpler, low-dimensional toy settings. To achieve this, we establish
tropical geometry as a new setting to understanding generalization. Additionally, we
rigorously derive duality results, filling gaps in existing proofs and arguments.

Overall, the structure of our work is as follows. In Chapter 2, we begin by provid-
ing fundamental knowledge and relevant definitions, covering topics from standard
neural network theory to polyhedral complexes, probability and statistics. Chapter 3
introduces affine geometry, which is then linked to tropical geometry in Chapter 4.
In Chapter 5, we establish a duality result between ReLU networks and upper con-
vex hulls, which is then applied in Chapter 6 to characterize the decision boundary
of binary classification networks, and in Chapter 7 to analyze affine regions. In Chap-
ters 8-10, we apply the previously developed knowledge in a number simpler settings,
providing more evidence for the volume hypothesis.

In summary, our contributions are as follows:

1. we connect the volume hypothesis to tropical geometry, effectively transferring
the problem of investigating ReLU networks to the investigation of upper convex
hulls of points,

2. we fully formalize the relationship between the complexity of ReLU networks
and properties of their dual representations (Chapter 6 and Chapter 7),

3. we explicitly compute the dual representation of Telgarsky’s [15] sawtooth con-
struction (Chapter 8),

4. we provide evidence for the volume-hypothesis in simplified settings (e.g.,
Chapter 9), demonstrating in a specific case that a network we conjecture to
have exponential complexity (i.e., one that lives in the exponential complexity
regime, see Section 1.2) is expected to transition to the subexponential complex-
ity regime,
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5. we study additional toy examples throughout Chapter 10.

1.1 Perspectives on ReLU Networks

It is well known [11, 13, 14, 16, 19] that any fully connected feedforward network N
with ReLU activations partitions the input space into a collection of affine regions,
i.e., regions within which N behaves as an affine map (see Chapter 5). This property
has motivated various approaches to studying such networks in recent years. In the
special case where the input space is one-dimensional, the affine structure corresponds
to a sequence of breakpoints. Telgarsky used this framework to construct a narrow,
deep network with an exponential number of affine regions (breakpoints) [15].

However, this breakpoint perspective fails when the input space has dimension
greater than one. More recently, such systems have been analyzed from the perspec-
tives of space folds [20, 21, 22] and tropical geometry [12, 18, 23]. The former reveals
patterns of self-similarity in the network and emphasizes the emergence of non-convex
behavior, while the latter, which we adopt in this paper, facilitates the counting of
boundary pieces and affine regions [18] (see Chapter 6 and Chapter 7). It also estab-
lishes a connection between ReLU networks and tropical rational maps (see, for ex-
ample, Proposition 5.1.7), endowing the input space with the structure of a polyhedral
complex that can be further studied (see, for example, Chapters 6 and 7).

1.2 Complexity of ReLU Networks

As mentioned above, we measure the complexity of ReLU networks in two ways.
First, by counting the number of affine regions partitioning input-space. Second, in
the setting of binary classification, by considering the number of linear pieces in the
decision boundary.

Especially the former has been studied in recent years. Montafúr et al. [11], building
upon work by Pascanu et al. [17], show that a ReLU network N : Rd → RnL with L
layers, whose width nl at layer l satisfies d ≤ nl ≤ w for some w ∈ N, can compute
functions that have Ω

(
(w/d)(L−1)dwd

)
affine regions. Using tropical geometry, Zhang

et al. [12] derive the upper bound O
(
wd(L−1)

)
on the maximum number of affine re-

gions (recreating the result of Raghu et al.[13]). Combining these two observations im-
plies that the maximum number of affine regions grows polynomially with the width
w and exponentially with the number of layers L. We refer to the regime in which the
number of affine regions follows these laws as the exponential complexity regime.

However, achieving exponential expressivity typically requires careful network de-
sign. Telgarsky [15] constructs a narrow, deep network with exponentially many affine
regions. We conjecture that the exponential complexity regime requires such careful
constructions, making it unstable and occupy a small volume in parameter-space.

To further quantify the expressive advantage of depth at initialization, Hanin et al. [16]
studied the expected number of affine regions in a ReLU network. They found the

4



complexity to increase linearly in the number of hidden neurons along any one-
dimensional subspace, suggesting that, in practice, networks use much less than their
theoretically maximal available expressivity. In a subsequent study [14], they show
that the expected number of affine regions defined by a deep ReLU network grows
polynomially in the number of hidden neurons, with the exponent equal to the input
dimension. We call the regime in which the number of affine regions follows these
laws the subexponential complexity regime. We conjecture that it is more stable than the
exponential complexity regime, occupying a larger volume in parameter-space. This
stability allows networks to adjust their complexity as needed, helping mitigate over-
fitting.

The goal of this work is to use tropical geometry to formalize and provide evidence
for our claim about the stability of the two complexity regimes. By employing count-
ing techniques and studying upper convex hulls, we aim to show that deep ReLU
networks typically do not exploit their theoretically available exponential expressiv-
ity. Specifically, in Chapter 9, we introduce a network that we believe resides in the
exponential complexity regime. Corollary 9.4.13 demonstrates that the complexity is
expected to decrease after applying one random layer, suggesting that the network
naturally transitions from the exponential to the subexponential complexity regime.
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Chapter 2

Mathematical Background

In this chapter, we introduce key concepts and some background for later parts of this
work. Fix an integer d ∈ N throughout it.

2.1 Neural Networks

This section covers the basics of fully connected feedforward artificial neural net-
works. We begin by defining their structure, followed by a brief discussion on training
and their applications in classification and regression tasks.

2.1.1 Fully Connected Feedforward Networks

A linear, fully connected feedforward network N : Rd → RnL with L layers can be
thought of as a concatenation of L functions N = N 1 ◦ . . . ◦ N L, where each N i acts
like N i : Rni−1 → Rni for some natural numbers n0, . . . , nL (with n0 = d). Each of the
functions N i consists of ni computational units – its coordinate functions, also called
neurons – which form the i‘th layer of the network. A network is called deep if L ≫ 1
and wide if ni ≫ 1.

In some settings, it may be useful to post-compose N with the identity map, N 0 :=
idRd . This input layer serves the purpose of feeding the data into the network. The last
layer is called the output layer. All other layers are called hidden layers. We will study
them in the following few paragraphs.

Fix i > 1. The j‘th neuron in the i’th layer is assigned a weight wi,j ∈ Rni−1 and a bias
bi,j ∈ R. Given an input x ∈ Rni−1 , the neuron computes ai,j := ⟨x,wi,j⟩+ bi,j ∈ R. The
value ai,j is called the pre-activation of neuron j in layer i.

To simplify notation, the ni neurons in layer i are typically grouped into a weight-matrix
Wi ∈ Rni,ni−1 , which contains wi,j as its j‘th row. Similarly, the biases bi,j are collected
into a bias-vector bi ∈ Rni . With this notation, the pre-activation of layer i is given by

N i(x) = Wix+ bi ∈ Rni . (2.1)
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Figure 2.1: The computational graph of a neural network with L = 3 layers. The
vertical arrays of nodes correspond to the neurons in a layer, with the first (or left-
most) stack resembling the input to the network. The consecutive layers N 1,N 2,N 3

propagate the input x forward through the network, ultimately producing the output
y := a3.

Given that the neural network is the concatenation of the layer functions N i, the re-
cursive definition of the network is

a0 := x (2.2)
ai+1 := fi+1(ai) = Wi+1ai + bi+1, i = 0, . . . , L− 1, (2.3)

where x is the input and y := aL the output or prediction of the neural network. Equa-
tion (2.3) explains how one can think of x as propagating forward through the net-
work. This process is called the forward pass.

Networks of the form given in Equation (2.3) are composed of affine maps and are
therefore themselves affine. To enhance their expressivity and expand the class of
functions they can model, nonlinearities are typically introduced at every layer. The
following definition summarizes the constructions discussed so far.

Definition 2.1.1 (Fully Connected Feedforward Networks). A fully connected feedfor-
ward network N : Rd → RnL takes as an input a vector x ∈ Rd and returns an output
y := aL. It is defined inductively by{

a0 := x

al+1 = ρtl+1
(Wl+1al + bl+1) , 0 = 1, . . . , L− 1,

where Wl+1 ∈ Rnl+1,nl and bl+1 ∈ Rnl+1 are the weight matrix and bias vector at layer
l + 1. Furthermore, ρtl+1

(x) = max(x, tl−1) is the activation function at layer l + 1 with
threshold tl ∈ R ∪ {−∞}. The number L is called the depth of the network, while nl is
the width of layer l. The network is deep if L≫ 1.

Typical nonlinearities at layer l are of the form

ρtl : R→ R
x 7→ max(x, tl),

where tl ∈ R∪{−∞} is the threshold, and applied element-wise. There are two specific
cases relevant to this work:
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1. ρ0(x) = max(x, 0) is the ReLU (“rectified linear unit“)

2. ρ−∞(x) = x is the identity.

Definition 2.1.2 (ReLU Newtorks). A network in the sense of Definition 2.1.1 with
ReLU activations (and potentially a linear activation at the last layer) is called a ReLU
network.

A more comprehensive comparison of different activation functions used in deep
learning can be found in [24].

Remark 2.1.3. In this work, we occasionally think of the activations al at layer l as a
function of the input x ∈ Rd, i.e., al : Rd → Rnl .

It is well known [11, 13, 14, 16, 19] that a ReLU network N partitions the input space
into regions on which N is affine:

Definition 2.1.4 (Affine Regions). Let N be a ReLU network in the sense of Defini-
tion 2.1.1. An affine region defined by N is a maximal connected subset C ⊆ Rd such
that N restricts to an affine region on C.

Alternatively, the affine regions can be defined as the connected components of the set
Rd \ {x ∈ Rd|∇N is discontinuous at x} [14, Definition 2].

2.1.2 Classification vs. Regression

The fundamental goal of (supervised) machine learning is to learn unknown functions
from samples (xi, yi) of input-output pairs. Whenever yi can take continuous values,
the task is called regression. An example would be inferring the price of a stock from
economic information [25]. Whenever yi can only take discrete values, the task is called
classification, and yi is referred to as the class or label of xi. An example would be
identifying hand-written digits or differentiating images of different objects [26, 27].

While architectures for regression tasks can look as general as the one introduced in
Definition 2.1.1, architectures for classification usually require some specifications. In
this work we are specifically interested in the case of binary classification, which is the
setting where the labels can only take one of two possible values:

Definition 2.1.5 (ReLU Binary Classification Network). A binary classification network is
a neural network in the sense of Definition 2.1.1, where the last layer has width nL = 1
and is linear (i.e., has threshold tL = −∞). Throughout this work, we furthermore
assume that tl = 0 for l < L and thus speak of a ReLU (binary) classification network.

The output of a binary classification network is interpreted as a vote for the class label:

Definition 2.1.6. A scoring function takes the output returned by a binary classification
network and classifies the corresponding sample. In our setting, it will take the form

s : R→ {−1, 1}
ỹ 7→ sign(y).
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A binary classification network, together with a scoring function, partitions the input-
space into disjoint subsets, each labeled as positive or negative. The boundaries sepa-
rating positively and negatively labeled subsets are collectively referred to as the deci-
sion boundary (see Figure 5.1b for an example):

Definition 2.1.7. LetN be a ReLU binary classification network in the sense of Defini-
tion 2.1.5. Then the decision boundary of N is the set

B := N−1(0). (2.4)

2.1.3 Training Neural Networks

The power of artificial neural networks lies in their numerous degrees of freedom and
their ability to adjust them in a data-dependent manner. This is achieved by defining
a loss function L over a training set (xi,yi)i∈I of samples, which the network aims to
minimize. In the setting of regression, for example, this loss might measure how good
a prediction aL describes a true output y using the mean squared error:

L =
∑
i∈I

1

|I|
∥aL(xi)− yi∥22.

A common method for automatically adjusting the network parameters to minimize
the loss L is gradient descent, which iteratively updates the networks parameters like

θ 7→ θ − α∇θL, (2.5)

where α > 0 is the learning rate. Intuitively, gradient descent adjusts the current esti-
mate of the network parameters by iteratively moving down the loss landscape in the
direction of steepest descent. Since it uses the gradient of the loss to guide updates,
gradient descent is also called a first order optimization technique.

Since the true gradient of the loss function is typically not accessible, it must be esti-
mated empirically using the training data. This leads to a training algorithm called
stochastic gradient descent (SGD). Note that, in practice, refined versions of SGD are
commonly used, such as the ADAM optimizer [28].

In this work, we also examine an optimization algorithm called Guess & Check
(G&C) [6]. This optimizer operates without gradients and thus falls in the category
of zero’th order optimization techniques. It works by randomly sampling parameter
vectors until it finds one that minimizes the training error (see Algorithm 1). While
this algorithm is not commonly used in practice, it serves as a way to study the struc-
ture of the loss landscape, as discussed in Chapter 1.

2.2 On Sets, Functions and (In)Dependence

In this section, we present a number of useful definitions and basic mathematical state-
ments.

We start with a number of definitions regarding the relative position of objects in Rd+1.
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Algorithm 1 Guess and Check Algorithm for Sampling Parameters θ. Returns the first
set of parameters achieving training loss below a tolerance ε.

1: Input: Hyperparameter ε defining the algorithms tolerance
2: Initialize: L ← ∞
3: while L ≥ ε do
4: Uniformly sample a random parameter vector θ
5: Compute the training error L(θ)
6: if L(θ) < ε then
7: Return θ
8: end if
9: end while

Definition 2.2.1 (Point-Function). Let N : Rd → R be a function and (x, y) ∈ Rd+1 be a
point.

i) We write (x, y) ∈ f if (x, y) lies in the graph of f , i.e., y = f(x).

ii) We say that (x, y) lies above f if y > f(x). In this case, we write x ≻ f . If (x, y) lies
above or on f , i.e., y ≥ f(x), we write x ⪰ f . Similarly, we write x ≺ f if (x, y) lies
below f and x ⪯ f if (x, y) lies below or on f .

Definition 2.2.2 (Set-Function). Given a function N : Rd → R and a set X ⊆ Rd+1, we
write f ≻ X if f ≻ x for all x ∈ X . We analogously define f ⪰ X , f ≺ X and f ⪯ X .

Definition 2.2.3 (Set-Point). Given a point (x, y) ∈ Rd+1 and a subset U ⊆ Rd+1, we say
that (x, y) lies below U if y < u for all (x, u) ∈ U .

Next, we provide a number of statements regarding linear- and affine independence.

Definition 2.2.4 (Affine Independence). A finite set {x1, . . . ,xn} ⊆ Rd is affinely in-
dependent if there does not exist a set of scalars {α1, . . . , αn} ⊆ R, not all zero, such
that

n∑
i=1

αixi = 0 and
n∑

i=1

αi = 0.

The following lemma establishes a well-known close relationship between linear and
affine independence:

Lemma 2.2.5. A finite set {x1, . . . ,xn} ⊆ Rd is affinely independent if and only if the set
{x2 − x1, . . . ,xn − x1} is linearly independent.

Proof. “⇒“: Let x1, . . . ,xn be affinely independent and α2, . . . , αn ∈ R s.t.

n∑
i=2

αi(xi − x1) = 0.

Then, after defining

α1 := −
n∑

i=2

αi,

10



it holds that
n∑

i=1

αixi = 0 and
n∑

i=1

αi = 0.

By affine independence of x1, . . . ,xn, this implies that

αi = 0 ∀i = 1, . . . , n.

This shows the first implication.

“⇐“ Assume that (xi − x1)i=2,...,n are linearly independent and that

n∑
i=1

αixi = 0 with
n∑

i=1

αi = 0.

Then

0 =
n∑

i=1

αixi

=
n∑

i=1

αix1 +
n∑

i=2

αi(xi − x1)

=
n∑

i=2

αi(xi − x1).

It follows from linear independence of the differences that αi = 0 for all i = 2, . . . , n
and thus also for i = 1. This concludes the proof.

The relationship between linear and affine independence can be used to determine the
affine dimension of a convex hull. However, before proceeding, we first need to define
the dimension of a set:

Definition 2.2.6 (Affine Dimension of a Set). Let X ⊆ Rd. Then the affine hull of X
is the smallest affine subspace of Rd containing X . We denote it by affhul(X). We
furthermore define the dimension of X as the dimension of its affine hull,

dimX := dim affhul(X).

Here, the dimension of an affine space is the cardinality of a maximal affinely inde-
pendent set generating it.

Lemma 2.2.7. Let S = {x1, . . . ,xn} ∈ Rd be as set of points. Then the convex hull of S has
dimension

dim C(S) = dim span
(
xi − x1

∣∣ 2 ≤ i ≤ n
)
.

Proof. Follows from the observation that the smallest affine subspace containing S is
the same as the smallest affine subspace containing C(S) and Lemma 2.2.5.

The last statement of this section generalizes the statement of Lemma 2.2.5 to sums of
sets:
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Lemma 2.2.8. Let A = {a1, . . . , an}, B = {b1, . . . ,bm} ⊆ Rd be two finite sets of points.
Then the set C := {a + b

∣∣ a ∈ A, b ∈ B}1 is affinely independent if and only if the set
{a2 − a1, . . . , an − a1,b2 − b1, . . . ,bm − b1} is linearly independent.

Proof. For ease of notation, we introduce the short hand notation [n] := {1, . . . , n} for
some n ∈ N. “⇒“: Assume C is affinely independent and let α2, . . . , αn ⊆ R and
β2, . . . , βm ⊆ R be scalars s.t.

n∑
i=2

αi(ai − a1) +
m∑
j=2

βj(bj − b1) = 0.

After defining

α1 := −
n∑

i=2

αi

β1 := −
m∑
j=2

βm,

this statement can be rephrased as

n∑
i=1

αiai +
m∑
j=1

βjbj = 0 (2.6)

with
n∑

i=1

αi = 0 (2.7)

and
m∑
j=1

βj = 0. (2.8)

Next, we define the scalars γi,j ∈ R for 1 ≤ i ≤ n, 1 ≤ j ≤ m as

γi,j :=
αi

m
+
βj
n
.

Then, by Equations (2.7)-(2.8),

n∑
i=1

γi,j = βj (2.9)

m∑
j=1

γi,j = αi. (2.10)

1We will later recognize this sum as the Minkowski sum of A and B
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Consequently, Equation (2.6) can be re-written as∑
i,j∈[n]×[m]

γi,j(ai + bj) = 0

with ∑
i,j∈[n]×[m]

γi,j = 0

(the latter equality follows from Equations (2.7)-(2.8)).

By assumption, C is affinely independent and we conclude that γi,j = 0 for all i, j ∈
[n]× [m]. It follows from Equations (2.9)-(2.10) that αi = 0 and βj = 0 for all 1 ≤ i ≤ n,
1 ≤ j ≤ m. This shows one direction.

“⇐“: Assume the set {a2−a1, . . . , an−a1,b2−b1, . . . ,b2−bm} is linearly independent
and let γi,j ∈ R be scalars for all i, j ∈ [n]× [m] s.t.∑

i,j∈[n]×[m]

γi,j(ai + bj) = 0 and
∑

i,j∈[n]×[m]

γi,j = 0. (2.11)

Define

αi :=
m∑
j=1

γi,j

βj :=
n∑

i=1

γi,j.

Then Equation (2.11) can be re-written as

n∑
i=1

αiai +
m∑
j=1

βjbj = 0 and
n∑

i=1

αi0,
m∑
j=1

βj = 0.

Consequently,

n∑
i=1

αiai +
m∑
j=1

βjbj =
n∑

i=1

αia1 +
m∑
j=1

βjb1 +
n∑

i=2

αi(ai − a1) +
m∑
j=2

βj(bj − b1)

=
n∑

i=2

αi(ai − a1) +
m∑
j=2

βj(bj − b1)

= 0.

By assumption, we conclude that αi = 0 and βj = 0 for all 2 ≤ i ≤ n, 2 ≤ j ≤ m. This
also implies α1 = β1 = 0 and thus γi,j = 0 for all i, j ∈ [n] × [m]. This shows the other
direction and concludes the proof.
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2.3 Polyhedral Complexes

In this section, we introduce fundamental concepts related to polyhedral complexes,
which will play a crucial role in later chapters.

Definition 2.3.1 (Polyhedron & Polytope). A polyhedron P is the intersection of finitely
many closed half-spaces in Rd and can thus be written as

P = {x ∈ Rd
∣∣Ax ≤ b}

for some A ∈ Rm,d and b ∈ Rm with m ∈ N. A polytope is a bounded polyhedron.

As the following lemma shows, this is not an empty definition.

Lemma 2.3.2 ([29, Section 2.3]). The convex hull of finitely many vertices is a polytope.

The “boundary“ of a polyhedron is made up of faces:

Definition 2.3.3 (Face of a Polyhedron). Let P ⊆ Rd be a polyhedron. A face of P is a
non-empty subset F ⊆ P s.t.

F = P ∩ {x
∣∣A′x = b′}, (2.12)

where A′ arises from A and b′ arises from b by deleting rows with the same indices.
In other words, some of the inequalities defining P are satisfied as equalities in F (see
also Definition 2.3.7). The dimension of a face is the dimension of the smallest affine
subspace containing it. Zero-dimensional faces are called vertices.

Useful for our studies will be a collection of faces called the upper convex hull:

Definition 2.3.4 (Upper Convex Hull). Consider the polytope P formed by the convex
hull C(S) of a finite set of points S ⊆ Rd. An upper face of P is a face whose inner
normal vector (the normal vector pointing inward to P ) has negative last coordinate.
We call the union of all upper faces the upper convex hull of S, denoted by U(S). The
union of all k-faces in U(S) is denoted by Uk(S). In the specific case where k = 0, we
write U∗(S) := U0(S) (see Figure 3.3 for an example).

This concludes our study of individual polyhedra. A collection of multiple polyhedra
can form a structure known as a polyhedral complex:

Definition 2.3.5 (Polyhedral Complex). A polyhedral complex Σ is a collection of poly-
hedra satisfying two conditions:

i) if P is a polyhedron contained in Σ, then any face of P is also contained in Σ,

ii) if P and Q are both polyhedra contained in Σ, then P ∩Q is either empty or a face
of both P and Q.

The support of a polyhedral complex Σ ∈ Rd is the union of the points in all of the
polyhedra:

|Σ| := {x ∈ Rd
∣∣x ∈ P for some polyhedron P ∈ Σ}.

Individual polyhedra inside Σ are called cells. The dimension of a cell σ is the dimension
of the smallest affine subspace containing it. The (d − 1)-dimensional polyhedra are
called facets of Σ.
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A polyhedral complex consists of skeletons of different dimensionalities:

Definition 2.3.6 (K-Skeleton). The k-skeleton of a polyhedral complex Σ is the sub-
complex formed by all cells σ ∈ Σ with dimension dim(σ) = k.

This concludes our introduction to polyhedral complexes. In the remainder of this
section, we develop a theory for determining the dimension of a polytope, largely
following the approach outlined in [30].

For simplicity, we will use the short-hand notation {Ax ≥ b} := {x
∣∣Ax ≥ b}.

Definition 2.3.7 (Implicit Equalities). Given a system of linear inequalities Ax ≥ b
(that is, ⟨ai,x⟩ ≥ bi for all rows ai in A and entries bi in b), an inequality ⟨ai,x⟩ ≥ bi is
an implicit equality if

⟨ai,x⟩ = bi ∀x ∈ {Ax ≥ b}.
We define A=x = b= to be the system of implicit equalities and A+x ≥ b+ to be the
system of remaining inequalities.

Intuitively, the implicit inequalities can be thought of as restricting the polyhedron to a
lower-dimensional subspace. For example, a two-dimensional polyhedron embedded
in three-dimensional space needs to be confined to a two-dimensional affine subspace
by an implicit equality constraint.

The following is an almost trivial helping lemma:

Lemma 2.3.8 ([30, Proposition 8]). Let P = {Ax ≥ b} be a polyhedron such that not all of
the constraints are implicit equality constraints. Then there exists a point x ∈ P such that

A=x = b=

A+x > b+.

In other words, there exists a point in P that does not lie on a face of P .

Proof. Let x ∈ P . If x has the desired properties, we are done. If not, there exists an
inequality constraint which is satisfied with equality by x (that is, x lies on a face of
P ). Since this constraint is not part of the equality constraints, there must be exists
an x0 ∈ P satisfying the constraint with strict inequality. Pick this x0 and repeat the
argument.

The previous lemma allows identifying the affine hull of a polyhedron:

Lemma 2.3.9 ([30, Lemma 9]). Let P = {Ax ≥ b} be a polyhedron with existing implicit
equality constraints. Then

affhul(P ) = {A=x = b=}.

Proof. If all of the constraints are implicit equality constraints, the claim is trivial.
Hence, we may assume that there exist some constraints that are not implicit equality
constraints.

"⊆": We start by showing that

affhul(P ) ⊆ {A=x = b=}. (2.13)
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Let x ∈ affhul(P ). Then there exists an m ∈ N and x1, . . . ,xm ∈ P , α1, . . . , αm ∈ R
satisfying

∑m
i=1 αi = 1 such that

x =
m∑
i=1

αixi.

This implies that

A=x =
m∑
i=1

αiA=xi

=
m∑
i=1

αib=

= b=,

where we used the fact that P ⊆ {A=x = b=}. This shows the first inclusion.

"⊇": Next we show that
affhul(P ) ⊇ {A=x = b=}. (2.14)

Let x satisfy A=x = b= and pick an x′ ∈ P s.t.

A=x
′ = b=

A+x
′ > b+,

which is possible by Lemma 2.3.8.

If x ∈ P , we are done. Also if x = x′, then x ∈ P and we are done. Hence, we
may assume that x ̸= x′ and x ̸∈ P . Let l be the line-segment from x′ to x, i.e.,
l = {tx+ (1− t)x′

∣∣ t ∈ [0, 1]}. We claim that

|l ∩ P | > 1, (2.15)

where | · | denotes the cardinality of a set. Since x′ ∈ l ∩ P , we only need to find one
more point in the intersection (see Figure 2.2). Since A=x = b= and x ̸∈ P , we know
that

A+x ̸≥ b+.

Additionally using the fact that

A=y = b= ∀y ∈ l
A+x

′ > b+

we conclude there has to exists an x0 ∈ l, x0 ̸= x′, satisfying

A=x0 = b=

A+x0 ≥ b+

and thus x0 ∈ P ∩ l. This shows Equation (2.15).

Finally, since x′,x0 ∈ P and x ∈ l,

affhulP ⊇ affhul{x0,x
′} ∋ x.

This concludes the proof.
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x′

x

Figure 2.2: Inspired by Figure 5.5 in [30]. Line segment joining x′ and x.

Proposition 2.3.10 ([30, Corollary 10]). Let P = {Ax ≥ b} be a non-empty polyhedron
with existing implicit equality constraints. Then

dimP = d− rankA=. (2.16)

Proof. By Definition 2.2.6, dimP = dimaffhul(P ). The proposition then follows from
Lemma 2.3.9 and the rank-nullity-theorem.
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Chapter 3

Affine Geometry

In this chapter, we introduce fundamental concepts of affine geometry, covering basic
definitions, the dual representation of affine functions, and their connection to upper
convex hulls. We also explore tessellations induced by maxima over affine functions.

Throughout this chapter, fix an integer d ∈ N.

3.1 Affine and (D)CPA Functions

We begin by introducing fundamental concepts.

Definition 3.1.1 (Affine Functions). Given a vector a ∈ Rd and a scalar b ∈ R, we
define the affine function with parameters a and b as

fa,b : Rd → R
x 7→ ⟨a,x⟩+ b,

where ⟨·, ·⟩ is the standard Euclidean inner product on Rd.

Ultimately, we will be taking maxima over affine maps. To classify such functions, we
introduce the following concept:

Definition 3.1.2 (CPA Functions). We say that a function f : Rd → R is CPA if it is
convex and piecewise affine. We denote by CPA(d) that set of CPA functions Rd → R.

It turns out that the class of CPA functions coincides with the class of maxima over
affine functions:

Proposition 3.1.3 (Characterizing CPA Functions [18, Proposition 2]). Any function
F : Rd → R of the form

F (x) = max{f1(x), . . . , fn(x)}

with affine functions fi : Rd → R is CPA. Also every CPA function with a finite number of
affine pieces is of this form.

Later in this work, we will also consider differences of CPA functions:
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(a, b)

D

x

y

z

(a)

AffR(d)
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x
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Figure 3.1: Example of the dual representation of an affine map fa, b with a =
(−1/2,−3/4), b = 3/4. Subfigure (b) contains the graph of fa,b ∈ AffR(d) and Sub-
figure (a) contains the parameterizing dual point (a, b) ∈ D. The map R assign to the
point (a, b) the affine map fa,b.

Definition 3.1.4 (DCPA Functions). We say that a function f : Rd → R is DCPA if it
can be written as the difference of two CPA functions. We denote by DCPA(d) the set
of DCPA function Rd → R.

3.2 Affine Dualities

In this section, we mainly follow the construction presented in [18], which allows map-
ping an affine function f : Rd → R to a “dual space“. As an outlook, exploring this
transformation will ultimately lead to understanding how ReLU networks can be un-
derstood as DCPA functions.

The graph of an affine function Rd → R defines a hyperplane in real space, which we
define as R := Rd × R = Rd+1. The space of affine functions whose graph lies in R is
called real affine space, denoted by AffR(d).

As mentioned in Definition 3.1.1, any affine function fa,b ∈ AffR(d) is characterized
by its parameters (a, b) ∈ Rd+1. We refer to the copy of Rd+1 that parametrizes affine
functions in AffR(d) as the dual space D.

The following lemma is a natural consequence of this construction, as it allows trans-
lating between real affine space and dual space:

Lemma 3.2.1. For any fixed dimension d, there exists a bijection between dual space and real
affine space, given by

R : D
∼−→ AffR(d)

(x, y) 7→ fx,y.

An example forR can be found in Figure 3.1. It has the following properties.
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Proposition 3.2.2. Let {xi, yi}i=1,...,n ⊆ D be a set of dual points. Then the following are
true:

i) R is a linear operator, i.e., for any set of scalars {αi}i=1,...,n ⊆ R,

R

(
n∑

i=1

αi(xi, yi)

)
=

n∑
i=1

αiR((xi, yi)).

ii) The set of dual points is linearly independent if and only if the corresponding set
{R((xi, yi))}i=1,...,n of affine functions is linearly independent.

iii) The set of dual points is affinely independent if and only if the corresponding set
{R((xi, yi))}i=1,...,n of affine functions is affinely independent.

Proof. i) can be confirmed by an easy calculation. ii) follows from i) and iii) from ii)
and Lemma 2.2.5.

Since both R and D are copies of Rd+1, it is natural to ask whether we can reverse
their roles in the above construction. The answer to this question is yes. We define
dual affine space AffD(d) as the space of affine functions with graph in D. Analogously
to the above construction, these affine functions are parameterized by points in R,
though with a slight caveat:

Lemma 3.2.3. For any fixed dimension d, there exists a bijection between dual affine space and
real space. It is given by

Ř : AffD(d)
∼−→ R

fa,b 7→ (−a, b).

Figure 3.2 provides an overview the relationship between R,D,AffR(d) and AffD(d).

AffR(d) R

D AffD(d)

graph

∼ R

graph

∼Ř

Figure 3.2: Diagram indicating the relationship between real (affine) and dual (affine)
space.

Note that, compared to R, the function Ř includes an additional minus and maps in
the opposite direction. This is essential for ensuring that the duality properties in the
following proposition hold:

Proposition 3.2.4 (Duality Properties [18, Proposition 7]). The maps R and Ř have the
following properties (using notation from Definition 2.2.2):
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1. A dual point c ∈ D lies on the graph of a dual affine function fa,b ∈ AffD(d) if and only
if the graph of the corresponding real affine function R(c) contains the corresponding
real point Ř(fa,b):

c ∈ fa,b ⇐⇒ Ř(fa,b) ∈ R(c)

2. A dual point c ∈ D lies above the graph of a dual affine function fa,b ∈ AffD(d) if and
only if the real point Ř(fa,b) lies below the graph ofR(c):

c ≻ fa,b ⇐⇒ R(c) ≻ Ř(fa,b)

3.3 CPA Functions as Upper Convex Hulls

In the previous section, we explored a duality that enables us to identify affine maps
with the vector containing their parameters. In this section, we apply these results to
maxima over affine functions, which, by Proposition 3.1.3, can be understood as CPA
functions.

In light of the duality results from the previous section, CPA functions correspond to
finite sets of dual points:

Definition 3.3.1. On the set Pfin(D) of finite subsets of D, the operator

Q : Pfin(D)→ CPA(d)

S 7→ Q(S) := max
s∈S
R(s)

assigns to a set of dual points the associated CPA function

max
s∈S
R(s)(x) = max

(a,b)∈S
⟨x, a⟩+ b.

We define Q(∅) := 0. On a vector of finite sets of dual points, Q acts component-wise.

Note that, by Proposition 3.1.3, the operator Q does indeed map to CPA(d).

Our next objective is to establish a connection between CPA functions and upper con-
vex hulls. To begin, we first state the following proposition:

Proposition 3.3.2 (Maximality of Upper Convex Hull [18, Proposition 9]). Let S ⊆ D
be a finite set of points. Then for every point w ∈ D lying below or on U(S) (in the sense
of Definition 2.2.3), the affine function dual to w lies fully below the maximum of the affine
functions whose duals lie in U∗(S). That is,

R(w) ≤ max{R(s)
∣∣ s ∈ U∗(S)} = Q(U∗(S)). (3.1)

If w lies truly below U(S), then even

R(w) < Q(U∗(S)). (3.2)

Proof. The proof follows largely the same structure as [18, Proposition 9], with a few
minor adaptations.

Let (x1, y1), . . . , (xn, yn) ∈ D, n ≥ 3, be distinct dual points. We start with the following
two observations:
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Figure 3.3: Example of an upper convex hull. Let S be the union of all displayed
points. The blue points correspond to U∗(S), the black surface is U2(S). In particular,
Q(S) is uniquely identified by only the blue points.

i) if (x1, y1) lies directly below (x2, y2), i.e., x1 = x2 and y1 < y2, then the dual plane
related to (x1, y1) lies below (x2, y2), i.e., R((x1, y1))(x) < R((x2, y2))(x) for all
x ∈ Rd

ii) if (xn, yn) lies on a face of U(S) spanned by (x1, y1), . . . , (xn−1, yn−1) ∈ U∗(S), then
R(xn, yn) ≤ max{R((xi, yi)

∣∣ i = 1, . . . , n− 1}.

Claim i) is trivial. For claim ii), assume there exist αi ∈ [0, 1],
∑n

i=1 αi = 1, s.t.

(xn, yn) =
n−1∑
i=1

αi(xi, yi).

Then

R((xn, yn))(x) =
n−1∑
i=1

αiR((xi, yi))(x) ∀x ∈ Rd

by linearity ofR (see Proposition 3.2.2). In particular,

R(xn, yn)(x) ≤ max{R((xi, yi))(x)
∣∣ i = 1, . . . , n− 1} ∀x ∈ Rd.

This shows claim ii).

The proposition then follows from the following observation. Assume that the point
w lies below or on U(S). Let (x1, y1) be a point directly above w lying on U(S). Then,
by i), R(w) < R((x1, y1)) if w does not lie on U(S) and R(w) ≤ R((x1, y1)) otherwise.
Furthermore, by ii),R((x1, y1)) ≤ max{R(s)

∣∣ s ∈ U∗(S)}. This shows the claim.

Having established this proposition, the identification of CPA functions with upper
convex hulls is a corollary:

Corollary 3.3.3 (CPAs as Upper Convex Hulls). Every CPA functionQ(S) can be uniquely
represented as an upper convex hull in dual space. That is, Q(S) = Q(U∗(S))
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Proof. Let Q(S) be a CPA function. Then for any x ∈ Rd,

Q(S)(x) = max
s∈S
R(s)(x)

= max{max
s∈U∗(S)

R(s)(x),max
s∈S\U∗(S)

R(s)(x)}

3.3.2
= max

s∈U∗(S)
R(s)(x)

= Q(U∗(S))(x).

This shows the claim.

A visualization of Corollary 3.3.3 can be found in Figure 3.3.

3.4 Tessellations

CPA functions induce a tessellation of Rd. It plays an important role in understanding
ReLU networks:

Definition 3.4.1 (Tessellation). Given a CPA function F (x) := max{f1(x), . . . , fn(x)}, a
cell induced by F is

{x ∈ Rd
∣∣ fi(x) = fi′(x) ≥ fj(x) for all i, i′ ∈ I, j ∈ J},

where I, J are disjoint sets whose union is {1, 2, ..., n}. The set of all cells induced F is
called the tessellation induced by F and denoted by T (F ).

Figure 5.1a contains an example of a tessellation. By a slight abuse of notation, we will
write T (S) for the tessellation induced by the CPA function Q(S).

The following lemma establishes a connection between tessellations and polyhedral
complexes, which were discussed in Section 2.3:

Lemma 3.4.2. The tessellation induced by a CPA function F forms a polyhedral complex.

Proof. Every cell of F is a polyhedron since it is defined by a set of linear inequalities.
It is left to show that the following two properties hold (see Definition 2.3.5):

i) any face of an cell is also a cell,

ii) the intersection of two cells is either empty or a face of both cells.

But this follows directly from the definition of the tessellation. Indeed, let σ be a cell
defined by two sets I and J , as in Definition 3.4.1. Then a face of σ is a cell associated
with two sets I ′ ⊇ I , J ′ ⊆ J obtained by moving indices from J to I (note that, at
a face of σ, there are more active equality constraints). This shows i). To see that ii)
holds, observe that the intersection of two cells, associated with sets I , J and I ′, J ′,
respectively, is the cell associated with the sets I ∩ I ′, J ∪ J ′ ∪ (I∆I‘) (here, ∆ denotes
the symmetric difference of sets).
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Figure 3.4: Figure 1 in [12]. Example of a tessellation, induced by the DCPA-function
given in Equation (3.3).

This last lemma tells us that we may think of a tessellation as a polyhedral complex
and the following definition makes sense:

Definition 3.4.3. Let F be a CPA function. We denote by Tk(F ) the k-skeleton of the
tessellation induced by F . The support of Td−1(F ) is also called an affine (or tropical)
hypersurface.

Example 3.4.4. As an example, Figure 3.4 shows the tessellation induced by P and N .

f : R2 → R, (x, y) 7→ max{1 + 2x, 1 + 2y, 2 + x+ y, 2 + x, 2 + y, 2}. (3.3)

The blue lines correspond to points on which two affine functions agree and are larger
than the others. They form the 1-skeleton of the tessellation. The intersections of these
lines are the 0-cells. On each of the white convex regions (the 2-cells) f is affine.

Figure 3.4 also illustrates how the tesselation forms a polyhedral complex: the face
of any polyhedron is again a polyhedron (for example, the faces of the white convex
regions are the 1-cells), and the intersection of any two polyhedra is either empty or
again a face.

So far, we have studied what it means for a CPA function to induce a tessellation of
Rd. The following definition clarifies what it means for a DCPA to do so.

Definition 3.4.5. Let F = Q(P ) − Q(N) be a DCPA function. We then define the
tessellation T (P,N) induced by F to consist of all non-empty pairwise intersections of
cells induced by P and N , i.e.

T (P,N) := {σ ∩σ′ ∣∣σ ∈ T (P ), σ′ ∈ T (N)} \ ∅.

As it turns out, T (P,N) is closely related to tessellations induced by different CPA
functions:

Definition 3.4.6 (Refinements). Let T and F be tessellations of Rd. We say that T is a
refinement F if every cell of T is contained in a cell of F . In this case, we write T ≪ F .

Lemma 3.4.7. Given two sets of dual points P,N ⊆ D, it holds that

T (P ∪N)≪ T (P,N)≪ T (N).
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Proof. For ease of notation, enumerate N = {n1, . . . , nm} and P = {p1, . . . , pk} with
m, k ∈ N.

A cell of T (N) is given by the solution of a system{
R(ni) = R(nj) ∀i, j ∈ I
R(ni) ≥ R(nj) ∀i ∈ I, j ∈ J

(3.4)

for some disjoint partition I ⊔ J = {1, . . . ,m}.

A cell of T (P,N) is given by the solution of a system
R(ni) = R(nj) ∀i, j ∈ I
R(pi′) = R(pj′) ∀i′, j′ ∈ I ′

R(ni) ≥ R(nj) ∀i ∈ I, j ∈ J
R(pi′) ≥ R(pj′) ∀i′ ∈ I ′, j′ ∈ J ′

(3.5)

for some disjoint partitions I ⊔ J = {1, . . . ,m} and I ′ ⊔ J ′ = {1, . . . , k}.

A cell of T (P ∪N) is given by the solution of a system

R(ni) = R(nj) ∀i, j ∈ I
R(pi′) = R(pj′) ∀i′, j′ ∈ I ′

R(ni) = R(pj′) ∀i ∈ I, j′ ∈ I ′

R(ni) ≥ R(nj) ∀i ∈ I, j ∈ J
R(pi′) ≥ R(pj′) ∀i′ ∈ I ′, j′ ∈ J ′

R(ni) ≥ R(pj′) ∀i ∈ I, j′ ∈ J ′

R(pi′) ≥ R(nj) ∀i′ ∈ I ′, j ∈ J

(3.6)

for some disjoint partitions I ⊔ J = {1, . . . ,m} and I ′ ⊔ J ′ = {1, . . . , k}.

Clearly, any solution to System (3.6) also solves System (3.5) and any solution to Sys-
tem (3.5) also solves System (3.4). This implies the claim.
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Chapter 4

Tropical Geometry

There exists a second perspective on affine geometry, which we introduced in the pre-
vious chapter, called tropical geometry. This chapter aims to lay out the foundational
concepts of this more abstract framework, as it provides an alternative viewpoint on
the constructions presented in the following chapters. It allows us to equip the space of
affine functions (with integer weights and allowing for −∞ biases) with the structure
of a semi-ring. Our approach in this chapter largely follows [12] and [29].

A reader solely interested in deriving the dual representation of ReLU networks may
skip this chapter and still understand the subsequent results. However, we believe that
the tropical perspective offers a valuable alternative viewpoint which helps develop a
deeper understanding of the underlying geometry.

4.1 Basic Definitions

Tropical geometry takes place in the tropical semiring:

Definition 4.1.1. The tropical semiring consists of the set T := R ∪ {−∞} together with
the operations ⊕ and ⊙, where ⊕ is called tropical addition and ⊙ is called tropical mul-
tiplication. These operations are defined as x ⊕ y := max{x, y} and x ⊙ y := x + y for
x, y ∈ R. Furthermore, −∞ ⊕ x := x and −∞ ⊙ x := −∞. The tropical quotient is
defined as x⊘ y := x− y.

Remark 4.1.2. As the name suggests, (T,⊕,⊙) is a semi-ring. For completeness, we
recall the defining properties below:

i) (R,⊙) is a monoid under tropical multiplication, i.e., ⊙ is associative and has a
multiplicative identity: 0

ii) (T,⊕) is an abelian group except for the existence of a tropical additive inverse, i.e., ⊕
is associative, commutative and has an additive identity: −∞

iii) tropical multiplication is distributive with respect to tropical addition.

Next, we introduce the notion of tropical exponentiation:
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Definition 4.1.3. Given x ∈ T and a ∈ N, x⊙a is defined as

x⊙a :=


x⊙ ...⊙ x = a · x x ∈ R
−∞ x = −∞ and a > 0

0 x = −∞ and a = 0

.

Similar to the real case, we can define monomials/polynomials over T:

Definition 4.1.4 (Tropical Monomials). A tropical monomial in d variables is an expres-
sion of the form

b⊙ x⊙a1
1 ⊙ ...⊙ x⊙ad

d

where b ∈ T and a1, ..., ad ∈ N. Multiindex notation allows writing b ⊙ x⊙α where
α ∈ Nd. We denote the space of tropical monomials in d variables by T{x1, . . . , xd}.

Definition 4.1.5 (Tropical Polynomials). A tropical polynomial f is a finite tropical sum
of tropical monomials,

f = b1 ⊙ x⊙α1 ⊕ ...⊕ br ⊙ x⊙αr

where αi ∈ Nd and bi ∈ T for all i = 1, ..., r. We will assume that αi ̸= αj for i ̸= j,
i.e., that the polynomial is in some sense reduced maximally. We denote the space of
tropical polynomials in d variables by T[x1, . . . , xd]

A concept that frequently arises in the context of neural networks is that of a tropical
rationals:

Definition 4.1.6 (Tropical Rationals). A tropical rational is the tropical quotient of two
tropical polynomials f and g:

f ⊘ g = f − g.

We will denote the space of tropical rationals in d variables by T(x1, . . . , xd).

So far, we have discussed concepts from tropical algebra, where the exponents of trop-
ical polynomials are natural numbers. However, this assumption can be relaxed to
allow for arbitrary real exponents, though at the expense of losing the structure of
tropical algebra. This broader perspective will yield more general results once paral-
lels to ReLU networks are explored in later chapters.

Start by extending Definition 4.1.3 naturally to make sense of what it means to raise
an expression to a real-valued tropical power, namely x⊙a = ax for a ∈ R. This allows
for the following definition:

Definition 4.1.7 (Tropical Simple Signomial). A tropical simple signomial in d variables
is an expression of the form

b⊙ x⊙a1
1 ⊙ . . .⊙ x⊙ad

d

where b ∈ T and a1, . . . , ad ∈ R. In particular, the exponent can be any real number,
as opposed to tropical monomials. Multiindex notation allows writing b ⊙ x⊙α with
α ∈ Rd. We denote the space of tropical simple signomials by TR{x1, . . . , xd}.

Analogously to how tropical polynomials are tropical sums of tropical monomials,
tropical signomials are tropical sums of tropical simple signomials:
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Definition 4.1.8 (Tropical Signomial). A tropical signomial φ is a finite tropical sum of
tropical monomials

φ = b1 ⊙ x⊙α1 ⊕ ...⊕ br ⊙ x⊙αr

where αi ∈ Rd and bi ∈ T for all i = 1, ..., r. We denote the space of tropical signomials
in d variables by TR[x1, . . . , xd].

Finally, we define tropical quotients of tropical signomials:

Definition 4.1.9 (Tropical Rational Signomial). A tropical rational signomial is the tropi-
cal quotient of two tropical signomials φ and ψ:

φ⊘ ψ = φ− ψ.

We denote the space of tropical rational signomials in d variables by TR(x1, . . . , xd)

4.2 Relation to Affine Geometry

As mentioned in the introduction to this section, there exists a close relationship be-
tween tropical geometry and affine geometry. In this section, we formalize and estab-
lish this connection.

Affine geometry, as introduced in Chapter 3, does not account for −∞. In order to
establish the aforementioned connection, we begin by restricting tropical signomials
to those with finite coefficients:

Definition 4.2.1. We denote by

Tfin
R {x1, . . . , xd} :=

{
b⊙ x⊙α ∈ TR{x1, . . . , xd}

∣∣ b ∈ R
}

the space of tropical simple signomials with finite coefficients. Analogously, we denote
by Tfin

R [x1, . . . , xd] the space of tropical sums of tropical simple signomials with finite
coefficients and by Tfin

R (x1, . . . , xd) the space of tropical quotients of tropical signomials
with finite coefficients.

It is evident from this definition that, for instance, Tfin
R {x1, . . . , xd} ⊊ TR{x1, . . . , xd},

since the space on the right hand side also permits coefficients b = −∞. Nevertheless,
this restriction allows making the following identifications between objects from affine
geometry and objects from tropical geometry:

Proposition 4.2.2. The following maps are bijections.

1. Affine functions can be identified with finite-coefficient simple signomials,

AffR(d)
∼−→ Tfin

R {x1, . . . , xd}
fa,b 7→ b⊙ x⊙a

2. CPA functions can be identified with finite-coefficient tropical signomials,

CPA(d)
∼−→ Tfin

R [x1, . . . , xn]

max
i=1,...,n

fai,bi 7→ b1 ⊙ x⊙a1 ⊕ . . .⊕ bn ⊙ x⊙an
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3. DCPA functions can be identified with finite-coefficient tropical rational signomials,

DCPA(d)
∼−→ Tfin

R (x1, . . . , xn)

max
i=1,...,n

fai,bi − max
i=1,...,m

fci,di 7→
n⊕

i=1

bi ⊙ x⊙ai −
m⊕
i=1

di ⊙ x⊙ci .

In the remainder of this work, we will use the identifications in Proposition 4.2.2 with-
out always mentioning them specifically. For example, we will treat tropical signomi-
als b⊙ x⊙a as affine functions

b⊙ x⊙a : Rd → R
x 7→ fa,b(x).
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Chapter 5

Dual Representation of Neural
Networks

The previous two chapters introduced affine/tropical geometry. We will now apply
this knowledge to establish a connection between fully connected feedforward net-
works and DCPA functions, allowing us to translate the network to dual space.

5.1 Neural Networks and Affine Geometry

This section covers the affine perspective. As described in Section 4.2, the following
results can directly be translated to the tropical setting.

In order to establish the connection, we first need to develop some more machinery,
beginning with the definition of how to sum two sets:

Definition 5.1.1 (Minkowski Sum). Given two non-empty sets X, Y ⊆ Rd+1, we define

X ⊠Y := {x+ y
∣∣x ∈ X,y ∈ Y }

to be the Minkowski sum of X and Y . We define X ⊠ ∅ := X . On vectors of sets of dual
points, we define + to act component-wise.

Next, we list a number of properties of the operator Q from Definition 3.3.1, which
assigns to a set of dual points the corresponding CPA function:

Lemma 5.1.2 (Properties of Q [18, Proposition 12]). For any two sets of points X, Y ⊆ D
and every non-negative scalar α ≥ 0, the following are true:

i) Q(X ∪ Y ) = max{Q(X),Q(Y )}

ii) Q(X ⊠Y ) = Q(X) +Q(Y )

iii) α · Q = Q(α ·X), where the multiplication on the right hand side is the natural multipli-
cation of a set with a real number.

Proof. Follows directly from the definition of Q and a simple computation.

30



Neural networks rely heavily on matrix multiplications. On our mission to translate
them to dual space, we must first establish the concept of matrix multiplication in the
dual setting:

Definition 5.1.3. We define the multiplication of an m×n matrix A with a vector X of
n finite sets of dual points as

· : Rm,n × (Pfin(D))n → (Pfin(D))m

(A, X) 7→ A ·X

where

(A ·X)i :=

n

⊠
j=1

Aij ·Xj.

In the notation above, (Pfin(D))n denotes the n-fold Cartesian product of Pfin(D) with

itself and ⊠
n

j=1 denotes the Minkowski sum over the sets indexed by {1, . . . , n}.

The following lemma shows that matrix multiplication and the Q-operator commute:

Lemma 5.1.4 (Matrix Multiplication [18]). Let X ∈
(
Pfin(D)

)n be a vector of finite sets of
dual points and A ∈ Rm,n

+ a matrix with non-negative entries. Then

AQ(X) = Q(A ·X).

Proof. In the setting of this lemma, Q is applied coordinate-wise, and thus we can
understand the multiplication AQ(X) as the matrix-vector multiplication:

[AQ(X)]i =
n∑

j=1

Aij[Q(X)]j

(∗)
=

n∑
j=1

Q(AijXj)

(∗∗)
= Q(

n

⊠
j=1

AijXj)

5.1.3
= Q([A ·X]i)

= [Q(A ·X)]i.

In (∗) and (∗∗) we used Lemma 5.1.2 iii) and ii), respectively.

In order to account for biases, we define how to add a scalar to a set of dual points:

Definition 5.1.5. A scalar can be added to a set of dual points by adding the scalar to
the last entry of each point in the set:

⊞ : Pfin(D)× R→ Pfin(D)

(X,α) 7→ X ⊞ α,

where X ⊞ α is the set

X ⊞ α := {(x, y + α)
∣∣(x, y) ∈ X}.
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It turns out that Q is well behaved with respect to ⊞:

Lemma 5.1.6. For any finite set of dual points X ⊆ D and scalar α ∈ R, it holds that

Q(X) + α = Q(X ⊞ α).

Proof. For every z ∈ Rd, it holds that

(Q(X) + α)(z) = Q(X)(z) + α

= max
(a,b)∈X

fa,b(z) + α

= max
(a,b)∈X

⟨a, z⟩+ b+ α

= max
(a,b)∈X⊞α

⟨a, z⟩+ b

= Q(X ⊞ α)(z).

We are now ready to present the following fundamental proposition that establishes
the connection between ReLU networks and differences of piecewise affine functions:

Proposition 5.1.7 (Dual Representation [18, Proposition 16]). Assume that a neural net-
work in the sense of Definition 2.1.1 can, up to layer l − 1, be written as a DCPA function
al−1 = Q(Pl−1)−Q(Nl−1) for some vectors of finite sets of dual points Pl−1, Nl−1. Then, after
writing Wl = W+

l −W−
l using matrices W+

l and W−
l with non-negative entries, also the

network up to the l’th layer can be written as a DCPA function

al = Q(Pl)−Q(Nl)

with

Nl = (W−
l · Pl−1) ⊠(W

+
l ·Nl−1)

Pl =
(((

W+
l · Pl−1) ⊠(W

−
l ·Nl−1

))
⊞ bl

)
∪

{
Nl ⊞ tl, tl ̸= −∞
∅, tl = −∞.

Proof. First, note that

Wlal−1 =
(
W+

l −W−
l

)
(Q(Pl−1)−Q(Nl−1))

= (W+
l Q(Pl−1) +W−

l Q(Nl−1))− (W−
l Q(Pl−1) +W+

l Q(Nl−1))

(∗)
= Q

(
(W+

l · Pl−1) ⊠(W
−
l ·Nl−1)

)
−Q((W−

l · Pl−1) ⊠(W
+
l ·Nl−1))

= Q
(
(W+

l · Pl−1) ⊠(W
−
l ·Nl−1)

)
−Q(Nl),

where in (∗) we used Lemma 5.1.4 and Lemma 5.1.2 ii).

Next, assume first that tl ̸= −∞. Using the identity max{x− y, t} = max{x, y + t} − y
and the above reformulation of Wlal−1, we can write, using the definitions of Nl and
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Pl claimed in the proposition,

al = ρ(Wlal−1 + bl)

= max{Q
((
W+

l · Pl−1

)
⊠
(
W−

l ·Nl−1

))
−Q (Nl) + bl, tl}

(∗∗)
= max{Q

(((
W+

l · Pl−1

)
⊠
(
W−

l ·Nl−1

))
⊞ bl

)
−Q(Nl), tl}

= max{Q
(((

W+
l · Pl−1

)
⊠
(
W−

l ·Nl−1

))
⊞ bl

)
,Q(Nl) + tl} − Q(Nl)

(∗∗∗)
= Q

((((
W+

l · Pl−1

)
⊠
(
W−

l ·Nl−1

))
⊞ bl

)
∪ (Nl ⊞ tl)

)
−Q(Nl)

= Q(Pl)−Q(Nl).

In (∗∗) we used a vectorized version of Lemma 5.1.6 and in (∗∗∗) we used Lemma 5.1.2
i) and Lemma 5.1.6.

Now, assume tl = −∞. Then

al = ρ(Wlal−1 + bl)

= max{Q
((
W+

l · Pl−1

)
⊠
(
W−

l ·Nl−1

))
−Q (Nl) + bl,−∞}

= Q
(((

W+
l · Pl−1

)
⊠
(
W−

l ·Nl−1

))
⊞ bl

)
−Q(Nl)

= Q(Pl)−Q(Nl).

This concludes the proof.

The following corollary makes sure Proposition 5.1.7 can actually be applied to ReLU
networks by establishing the base case:

Corollary 5.1.8. Every neural network N in the sense of Definition 2.1.1 can be written as a
DCPA function

N = Q(P )−Q(N)

for some vectors of dual sets of dual points P,N ⊆ D. We call (P,N) the dual representation
of N .

Proof. The proof goes by induction on the number of layers L of the network. Cru-
cially, for this proof we introduce an identity-layer N 0 : Rd → Rd at the beginning of
the network (which can be thought of as an input-layer, see Section 2.1). This conve-
nient trick simplifies the proof in the following way:

We start the induction with L = 0. In this case, the network just consists of the input-
function N 0 = idRd , whose i’th coordinate function can be represented as

xi = ⟨x, ei⟩+ 0 = f0,i(x)

= Q({(ei, 0)})(x)−Q(∅)(x)
= Q({(ei, 0)})(x),

where ei ∈ Rd is the i‘th unit vector with entries (ei)j = δij . Hence, we can write

N 0 = Q (({(e1, 0)}, . . . , {(ed, 0)}))

and may choose P0 = ({(e1, 0)}, . . . , {(ed, 0)}), N0 = (∅). This shows the claim for
L = 0. For the induction step, use Proposition 5.1.7.
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Remark 5.1.9. Proposition 5.1.7 and Corollary 5.1.8 are important tools for the rest of
this work. We want to use this remark to highlight their significance. Let N : Rd → R
be a ReLU network with L layers.

i) Given the weights of N , the dual representation provides a symbolic representa-
tion (Pl, Nl) of N up to layer l.

ii) It is given by two nl-dimensional vectors Pl, Nl of finite sets of dual points, where
nl is the width of layer l. The dual points are d+ 1-dimensional.

iii) As we will see later, this symbolic representation allows counting the number of
affine regions defined by N (see Chapter 7). In the case of binary classification,
it furthermore allows counting the linear pieces in the decision boundary (see
Chapter 6).

iv) After each layer l, the sets of dual points can be replaced by their upper con-
vex hull (see Corollary 3.3.3). In particular, for every i ∈ {1, . . . , nl}, the set
(Pl)i ⊆ D = Rd+1 can be replaced by its upper convex hull vertices U∗((Pl)i). The
same holds for (Nl)i.

Scattered throughout this work, we employ a running example to highlight the above
points. See Example 5.2.6, Example 6.2.5 and Example 7.1.12.

5.1.1 Positive and Negative Samples

In this subsection, we use the duality result from Proposition 5.1.7 to understand
whether a point x ∈ Rd is positively or negatively classified by N = Q(P )−Q(N).

We start with the following lemma:

Lemma 5.1.10. Let A,B ⊆ Rd+1 be finite sets of points. Then the following are true for
x ∈ Rd:

Q(A ∪B)(x) = Q(A)(x) ⇐⇒ Q(A)(x) ≥ Q(B)(x) (5.1)
Q(A ∪B)(x) = Q(B)(x) ⇐⇒ Q(A)(x) ≤ Q(B)(x). (5.2)

Proof. Follows from Lemma 5.1.2 i).

This lemma allows identifying positively and negatively labeled samples:

Proposition 5.1.11. Let N = Q(P ) −Q(N) be a ReLU binary classification network. Then
the following are true for an input x ∈ Rd:

N (x) ≥ 0 ⇐⇒ Q(P ∪N)(x) = Q(P )(x) (5.3)
N (x) ≤ 0 ⇐⇒ Q(P ∪N)(x) = Q(N)(x). (5.4)

Proof. Follows from Lemma 3.4.7 and Lemma 5.1.10.

In words, Proposition 5.1.11 states that positively labeled points are characterized by
the property that the maximumQ(P ∪N) is attained byQ(P ). Similarly, negatively la-
beled points are characterized by the property that the maximum is attained byQ(N).
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5.1.2 Counting Dual Points

In this section, we use the recursive formulation in Proposition 5.1.7 to work towards
a better understanding of the sets inside P and Q. Specifically, we are interested in
upper bounding the size of the sets inside Pl and Nl at layer l. We start with a basic
definition.

Definition 5.1.12. Given a vector of finite sets of dual points X ∈ Pfin(D)n, we define
s(X) := maxi=1,...,n |Xi| to be the size of the largest set in X .

In the following lemma, we establish some properties of the function s.

Lemma 5.1.13. Let A ∈ Rm,n be a matrix, b ∈ R a scalar and X ∈
(
Pfin(D) \ ∅

)n, Y ∈(
Pfin(D) \ ∅

)k be vectors of finite, non-empty sets of dual points. Then the following are true:

i) For any 1 ≤ i ≤ m,

|(A ·X)i| ≤
n∏

j=1

|Xj|.

In particular,

s(A ·X) ≤ s(X)n.

ii)

|Xi ⊠Yj| ≤ |Xi||Yj| ∀1 ≤ i ≤ n, 1 ≤ j ≤ k.

iii)

|Xi ⊞ b| = |Xi| ∀1 ≤ i ≤ n.

Proof. ii) and iii) are clear. For i) we compute

|(A ·X)i| =

∣∣∣∣∣
n

⊠
j=1

AijXj

∣∣∣∣∣
ii)

≤
n∏

j=1

|AijXj|

≤
n∏

j=1

|Xj|

≤ s(X)n.

To better understand the maximal size of the sets in Pl and Nl, we first define the
quantity

ξl := s(Pl)s(Nl), for l = 1, . . . , L.

The following lemma provides recursive bounds involving ξl, s(Nl) and s(Pl):
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Lemma 5.1.14. For any l = 2, . . . , L, the quantities s(Nl) and s(Pl) can be upper-bounded in
terms of ξl−1 via

s(Nl) ≤ ξ
nl−1

l−1 (5.5)

and

s(Pl) ≤

{
2ξ

nl−1

l−1 , tk ̸= −∞
ξ
nl−1

l−1 , tk = −∞.
(5.6)

Furthermore, ξl satisfies the recursive relation

ξl ≤

{
2ξ

2nl−1

l−1 , tk ̸= −∞
ξ
2nl−1

l−1 , tk = −∞.
(5.7)

Proof. We start by showing Equation (5.5). Fix l ∈ {2, . . . , L}. Then

|(Nl)i| = |(W−
l · Pl−1)i ⊠(W

+
l ·Nl−1)i|

5.1.13

≤ |(W−
l · Pl−1)i||(W+

l ·Nl−1)i|
5.1.13

≤ s(Pl−1)
nl−1s(Nl−1)

nl−1

= ξ
nl−1

l−1

This shows Equation (5.5).

Similarly, one can show that

s(Pl−1) ≤ s(Pl−1)
nl−1s(Nl−1)

nl−1 +

{
s(Pl−1)

nl−1s(Nl−1)
nl−1 , tl−1 ̸=∞

0, tl−1 =∞.

which shows Equation (5.6). Finally, Equation (5.7) follows from the other two..

Lemma 5.1.14 provides recursive bounds for s(Nl) and s(Pl) involving ξl. In order to
derive closed-form bounds for s(NL) and s(PL), we need to unravel these recursions.
This is accomplished in the following proposition:

Proposition 5.1.15. Consider the setting of Proposition 5.1.7 with initial definitions of N0

and P0 as in Corollary 5.1.8. Then, if the thresholds tl satisfy tl ̸= −∞ for all l ≤ k, the
product ξk is upper bounded by

ξk ≤ 21+
∑k−1

j=1

∏k−1
i=j 2nj , k = 1, . . . , L. (5.8)

Proof. We prove the claim by induction on k.

First note that N0 = (∅) and P0 = ({(e1, 0)}, . . . , {(ed, 0)}), which immediately implies
that s(P0) = 1. It follows directly from Proposition 5.1.7, Lemma 5.1.13.i) and the fact
that W+

1 P0 + ∅ = W+
1 P0, that

s(N1) = s(W+
1 P0)

≤ s(P0)
d

≤ 1d

= 1
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and
s(P1) ≤ s(P0)

d + s(N1) ≤ 2,

which implies that
ξ1 = s(P1)s(N1) ≤ 2. (5.9)

Thus, the claim holds for k = 1. This starts the induction.

Next, assume Equation (5.8) holds for any layer 1 ≤ l < k. We show that it also holds
for l = k. Indeed,

ξk ≤ 2ξ
2nk−1

k−1

IH

≤ 2
(
21+

∑k−2
j=1

∏k−2
i=j 2nj

)2nk−1

= 2 · 22nk−1+
∑k−2

j=1

∏k−1
i=j 2nj

= 21+
∑k−1

j=1

∏k−1
i=j 2nj .

This finishes the proof.

Upper bounds for s(NL) and s(PL) are now a simple Corollary:

Corollary 5.1.16. Consider the setting of Proposition 5.1.7 with initial definitions N0 and P0

as in Corollary 5.1.8. Then, if the threshold tk ̸= −∞ for all k ≤ l, the maximum sizes of Nl

and Pl are upper bounded by

s(Nl) ≤ 2nl−1(1+
∑l−2

j=1

∏l−2
i=j 2nj)

and

s(Pl) ≤ 21+nl−1(1+
∑l−2

j=1

∏l−2
i=j 2nj).

Proof. Follows directly from Lemma 5.1.14 and Proposition 5.1.15

If the network’s output-dimension is nL = 1 (for example, in the context of Defini-
tion 2.1.5 for binary classification), NL and PL are vectors containing a single set of
dual points each. Thus, we can identify them as sets. The following corollary bounds
their size.

Corollary 5.1.17. Let N : Rd → R be a ReLU network with L ≥ 2 layers. Then we can write

N = Q(P )−Q(N)

where P,Q ⊂ D are finite sets of dual points whose size is upper bounded by

|P |, |N | ≤ 2nL−1(1+
∑L−2

j=1

∏L−2
i=j 2nj).

Proof. Since tL = −∞ (i.e., the last layer is linear), Lemma 5.1.14 implies that

|P |, |N | ≤ ξ
nL−1

L−1 .

The claim then follows from Proposition 5.1.15 since tl = 0 for all l < L.
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In the special case where all layers have the same width, the following holds:

Corollary 5.1.18. Let N : Rd → R be network in the sense of Definition 2.1.1 with L ≥ 2
layers of width nl = w ∈ N for all l = 1, . . . , L− 1. Then we can write

N = Q(P )−Q(N)

where P,N ⊆ D are vectors of finite sets of dual points whose size is upper bounded by

s(P ), s(N) ≤ 2w
1−(2w)L−2

1−2w = 2Θw((2w)L−3).

Proof. The bound follows from Corollary 5.1.17 if we can show that

w

(
1 +

L−2∑
j=2

L−2∏
i=j

2w

)
= w

1− (2w)L−2

1− 2w
.

Indeed,

w

(
1 +

L−2∑
j=2

L−2∏
i=j

2w

)
= w

(
1 +

L−2∑
j=2

(2w)L−2−j+1

)
(∗)
= w

(
1 +

L−3∑
j=1

(2w)j

)

= w
L−3∑
j=0

(2w)j

= w
1− (2w)L−2

1− 2w

= wΘ
(
(2w)L−3

)
The equality (∗) follows from inserting the upper and lower summation bounds and
comparing terms. The last two two equalities identify the geometric series and apply
known asymptotic behavior.

Remark 5.1.19. The following is an outlook and requires results from later on in this
work. The reader may want to either read Chapter 6 and Chapter 7 or just consult the
central results in Corollary 6.2.3 and Corollary 7.1.8 before reading this remark.

Using these results, we can derive upper bounds on the complexity realizable by a
ReLU network N = Q(P )−Q(N) : Rd → R with the first L− 1 layers of width w and
the last layer of width 1.

In particular, by Corollary 7.1.8, the number of affine regions defined by N is upper
bounded by the cardinality of the set U∗(P ⊠N) (this bound is tight for random net-
works by Conjecture 7.1.10). By Corollary 5.1.18,

|U∗(P ⊠N)| ≤ |P ⊠N | ≤ |P | · |N | ≤ 2Θ((2w)L−2). (5.10)
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Comparing this to the bound O(dw(L−1)) for the maximum number of affine regions
defined by a ReLU network with L layers of width w (see Section 1.2), we conclude
that the bound in Equation (5.10) on the number of affine regions is loose.

Similarly, Corollary 5.1.18 together with Corollary 6.2.3 provides the loose upper
bound

2max(|P |, |N |) ≤ 21+Θ((2w)L−3)

on the number of linear pieces in the decision boundary of N .

To understand why these bounds are so loose, note that only the points in the upper
convex hulls of P and N contribute to the CPA functions Q(P ) and Q(N) (see Corol-
lary 3.3.3).

This leads to the following conjecture:

Conjecture 5.1.20. By Corollary 3.3.3, a ReLU network (PL, NL) is already uniquely
characterized by the upper convex hulls of PL and NL. We conjecture that, usually,

|U∗(P )i| ≪ |Pi| and |U∗(N)i| ≪ |Ni| for all i = 1, . . . , L.

This conjecture is, for example, supported by our analysis of Telgarsky’s sawtooth
function (Proposition 8.2.6 and Figure 8.1).

5.2 Neural Networks and Tropical Geometry

In Section 4.2, we established a relationship between concepts from affine and tropi-
cal geometry. Consequently, the findings from Section 5.1 on relating ReLU networks
to DCPA functions can be re-formulated in the setting of tropical geometry. In this
section, first translate the main duality result in Proposition 5.1.7 to the tropical set-
ting, with the goal of gaining deeper insights and becoming more familiar with this
framework.

Similarly to Chapter 4, the tropical considerations in this chapter are not needed for
the remainder of this work as all results (except for Corollary 5.2.5) have already been
developed in the affine setting. We nevertheless provide this section for the sake of
completeness and to make the connection to tropical geometry more explicit.

Definition 5.2.1 (Tropical Rational Signomial Map). A tropical rational signomial map is
a function Rd → Rp for some p ≥ 1 which is a tropical rational signomial in every
coordinate.

The following proposition is the translation of the main duality result. It is a general-
ization of [12, Proposition 5.1], as it does not require integer-valued weights.

Proposition 5.2.2 (NN as Tropical Signomial Rational Functions). Assume that a neural
network in the sense of Definition 2.1.1 can be written up to layer l − 1 as a tropical rational
signomial map al(x) = Fl(x) ⊘ Gl(x) for some tropical signomial maps Fl and Gl

1. Then,

1Here, we think of al as a function of the network input x
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after writing Wl = W+
l −W−

l using matrices W+
l and W−

l with non-negative entries, also
the network up to l’th layer can be written as a tropical rational signomial map

al+1 = Fl+1 ⊘Gl+1.

The tropical signomial maps are given by

Gl+1 = W+
l+1Gl +W−

l+1Fl

Fl+1 = max{W+
l+1Fl +W−

l+1Gl + b,Gl+1 + t}.

Writing f (l)
i and g(l)i for the ith coordinate of Fl and Gl, the recurrence takes the form

g
(l+1)
i =

[
nl⊙
j=1

(
f
(l)
j

)⊙w−
ij

]
⊙
[(
g
(l)
j

)⊙w+
ij

]

f
(l+1)
i =

{[
nl⊙
j=1

(
f
(l)
j

)⊙w+
ij

]
⊙
[(
g
(l)
j

)⊙w−
ij

]
⊙ bi

}
⊕
(
g
(l+1)
i ⊙ ti

)
where we write (W+

l+1)ij = w+
ij and (W−

l+1)ij = w−
ij .

Proof. A calculation confirms that the above recursion corresponds to the recursion in
Proposition 5.1.7 after identifying

Fl = Q(Pl−1)

Gl = Q(Nl−1).

The following corollary is the analogue to Corollary 5.1.8, which takes place in the
affine setting:

Corollary 5.2.3 (Tropical Characterization of Neural Networks). Every networkN in the
sense of Definition 2.1.1 can be written as a tropical rational signomial map. That is,

N = F ⊘G

where F and G are tropical signomial maps.

One can show an even stronger result, namely that we have already found all binary
classification networks in the sense of Definition 2.1.5 as tropical rational signomials
Rd → R with finite coefficients. The following theorem is a generalization of [12,
Theorem 5.4.i)], since it does not assume integer weights.

Theorem 5.2.4 (Tropical Equivalence). LetN : Rd → R be a function. ThenN is a tropical
rational signomial with finite coefficients if and only if it is a neural network in the sense of
Definition 2.1.5.
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Proof. The “if“ follows from Corollary 5.2.3. We are left to show the “only if“. In this
proof we identify finite coefficient tropical signomials with CPA functions in the sense
of Proposition 4.2.2.

We first claim that every finite-coefficient tropical signomial
⊕n

i=1 bi ⊙ x⊙αi ∈
Tfin

R [x1, . . . , xd] with n tropical summands can be written as a ReLU network with n
layers and a final linear layer, i.e.,

n⊕
i=1

bi ⊙ x⊙αi(x) = ρ−∞ ◦ fn ◦ ρ0 ◦ . . . ◦ ρ0 ◦ f1(x) (5.11)

with affine functions fl : Rnl−1 → Rnl .

We show Equation (5.11) by induction on n. The base-case follows readily:

b1x
⊙α1(x) = ⟨α1,x⟩+ b1

= ρ−∞ (⟨α1,x⟩+ b1)

= ρ−∞ ◦ f1(x)

where f1 = fα1,b. This establishes the base-case.

Assume Equation (5.11) holds for all finite coefficient tropical signomials with less
than n tropical summands. We now show that it also holds for n tropical summands.

Let
⊕n

i=1 bi ⊙ x⊙αi ∈ Tfin
R [x1, . . . , xd] be a finite coefficient tropical signomial n tropical

summands.

By the induction hypothesis we can find two ReLU network representations

p(x) =
n−1⊕
i=1

bi ⊙ x⊙αi(x)

q(x) = bn ⊙ x⊙αn(x).

Define y(x) := (p(x), q(x)). Then y can also be expressed by an (n − 1)-layer ReLU
network by extending q(x) using linear layers and isolating the subnetworks using
zero-weights:

y(x) = ρ−∞ ◦ hn−1 ◦ ρ0 ◦ . . . ◦ ρ0 ◦ h1(x)

for affine functions hi.

Next, note that

n⊕
i=1

bi ⊙ x⊙αi(x) = max{p(x), q(x)}

= max{p(x)− q(x), 0}+ q(x)

= ρ−∞ [ρ0(p(x)− q(x)) + ρ0(q(x))− ρ0(−q(x))]
= ρ−∞ ◦ en ◦ ρ0 ◦ gn(y(x))
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where en is the linear function

en(x) =

 1
1
−1

x

and gn is the linear function

gn(x) =

1 −1
0 1
0 −1

x.

We obtain Equation (5.11) by defining

fi =


hi i = 1, . . . , n− 2

gn ◦ hi−1 i = n− 1

en i = n

It remains to show that we can also express a signomial tropical quotient φ ⊘ ψ as a
ReLU network where φ and ψ are tropical signomials with n andm tropical summands
respectively. By Equation (5.11), both φ and ψ can be represented as ReLU networks.
Again, fuse these two representation into a single ReLU network representation of
z(x) = (φ(x), ψ(x)).

Next, using the fact that x = x+ − x−, φ⊘ ψ can be written

(φ⊘ ψ) (x) = ρ−∞ (ρ0(φ(x))− ρ0(−φ(x)) + ρ0(−ψ(x))− ρ0(ψ(x)))
= ρ−∞ ◦ jn ◦ ρ0 ◦ kn(z(x))

where jn is the linear function

jn(x) =


1
−1
1
−1

x

and kn is the linear function

kn(x) =


1 0
−1 0
0 −1
0 1

x

Analogously to the proof of Equation (5.11), this gives a ReLU representation of φ ⊘
ψ.

Translated to the setting of affine geometry, the result of Theorem 5.2.4 result reads:

Corollary 5.2.5. Let N : Rd → R be a map. Then N is a DCPA function if and only if it is a
ReLU binary classification network in the sense of Definition 2.1.1.
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(a) Affine regions (b) Decision boundary

Figure 5.1: Figure (a) shows the affine regions defined by the network defined in
Equation (5.12). Figure (b) shows its decision boundary. Negatively classified regions
(threshold at 0) are colored red and positively classified regions are colored blue.

Example 5.2.6. In this example, we construct the dual representation of a toy example
in two dimensions. Throughout this work, we will revisit and use this example to
explain various aspect of the duality result.

Specifically, consider the 3 layer network

N : R2 → R (5.12)
N (x) = W3ρ0 (W2ρ0 (W1x+ b1) + b2) + b3 (5.13)

where

W1 =

(
−1 −1
1 −2

)
,b1 =

(
1
−1

)
,W2 =

(
−1 2
2 −1

)
,b2 =

(
1
2

)
,W3 =

(
3,−1

)
, b3 = 2.

We use Proposition 5.1.7 to iteratively construct the dual representation of N , starting
with P0 = ({(1, 0, 0)}, {(0, 1, 0)}) and N0 = (∅), as in Corollary 5.1.8.

After the first layer, the dual representation of N1 can be computed as

N1 = W−
1 P0 ⊠W

+
1 N0 =

(
1 1
0 2

)
P0

and thus

(N1)1 =

2

⊠
j=1

(W−
1 )1j(P0)j = 1 {((1, 0, 0))} ⊠ 1 {(0, 1, 0)} = {(1, 1, 0)}

(N1)2 =

2

⊠
j=1

(W−
1 )2j(P0)j = 0 {((1, 0, 0))} ⊠ 2 {(0, 1, 0)} = {(0, 2, 0)} ,

which implies
N1 = ({(1, 1, 0)} , {(0, 2, 0)}) .
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Similarly,

P1 = W+
1 P0 ⊠W

−
1 N0 ⊞ b1 ∪N1 =

(
0 0
1 0

)
P0 ⊞ b1 ∪N1

and thus

(P1)1 =

2

⊠
j=1

(W+
1 )1j(P0)j ⊞ (b1)1 ∪ (N1)1 = 0 {((1, 0, 0))} ⊠ 0 {(0, 1, 0)}⊞ 1 ∪ (N1)1

= {(0, 0, 1) , (1, 1, 0)}

(P1)2 =

2

⊠
j=1

(W+
1 )2j(P0)j ⊞ (b1)2 ∪ (N1)2 = 1 {((1, 0,−1))} ⊠ 0 {(0, 1, 0)}⊞−1 ∪ (N1)2

= {(1, 0, 0) , (0, 2, 0)} ,

which implies
P1 = ({(0, 0, 1) , (1, 1, 0)} , {(0, 2, 0) , (1, 0,−1)}) .

After repeating these steps for layer 2 and 3 (with a slight adaptation for the last linear
layer as in Proposition 5.1.7), one arrives at the following final dual representation of
N = Q(P )−Q(N):

N = {(3, 17, 4), (2, 16, 5), (5, 19, 2), (3, 14, 2), (2, 16, 3), (5, 19, 0), (6, 17,−1), (0, 14, 7)}
(5.14)

P = {(2, 16, 5), (5, 19, 2), (5, 19, 5), (11, 7,−1), (12, 5,−2), (3, 14, 4), (6, 17, 1), (6, 17, 4)}
(5.15)

Here, N := N3 and P := P3. Additionally, note that we have identified the one-
dimensional vectors of sets N3 and P3 with their only entry.

By Corollary 3.3.3, the CPA functions Q(N) and Q(P ) are uniquely identified by the
upper convex hulls of N and P , i.e.

Q(N) = Q(U∗(N)), Q(P ) = Q(U∗(P )).

This allows restricting our attention to subsets of N and P . Specifically, the upper
convex hull points can be determined2 as

U∗(N) = {(5, 19, 2), (3, 14, 2), (6, 17,−1), (0, 14, 7)}
U∗(P ) = {(2, 16, 5), (3, 14, 4), (5, 19, 5), (12, 5,−2)} .

Figure 5.2 contains a plot of the dual representation of this toy example, as well as the
upper convex hulls.

2We use SciPy to do so, see the code for more details.
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Figure 5.2: Two-dimensional toy-example defined in Equation (5.12). Red points cor-
respond to N , blue points are P . The red polygon is U(N), the blue polygon is U(P ).
Note that, in theory, both U(N) and U(P ) are polyhedral complexes, i.e., they can con-
sist of multiple facets.
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Chapter 6

Characterizing the Decision Boundary

We saw in Chapter 3 how to identify neural networks as DCPA functions using affine
geometry. In Chapter 4, we translated this result to tropical geometry, where it reads
that every neural network can be written as a tropical rational signomial map.

In this chapter, we use that result to characterize the decision boundary of ReLU binary
classification networks. This will eventually allow counting the linear pieces inside the
decision boundary.

Throughout this chapter, let S ⊆ D be a set of dual points whose upper convex hull
has vertices

U∗(S) = {s1, . . . , sn} = {(a1, b1), . . . , (an, bn)}.

Furthermore, given a set of indices I ⊆ {1, . . . , n}, we introduce the short-hand nota-
tion

SI := {si | i ∈ I}

for the subset of S indexed by I .

6.1 Identifying Cells and Faces

Towards quantifying the decision boundary complexity, we will establish in Theo-
rem 6.1.7 a bijection between the k-cells in T (S) and the (d − k)-faces in U(S). In
Section 6.2, we will use this result to translate the decision boundary to dual space,
where its complexity is easier to quantify.

Let σ ∈ T (S) be a cell in the tessellation induced by S. By Definition 3.4.1 and Corol-
lary 3.3.3, σ is the solution of a system of linear inequalities and equalities:{

R(si)(x) = R(si′)(x) ∀i, i′ ∈ Iσ=
R(si)(x) ≥ R(sj)(x) ∀i ∈ Iσ=, j ∈ Iσ+,

(6.1)

where Iσ= and Iσ+ form a disjoint partition of {1, 2, . . . , n}. W.l.o.g, this partition can be
chosen in such a way that no index can be moved from Iσ+ to Iσ= without altering the
solution space.
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Using the definition that R(si)(x) = ⟨ai,x⟩ + bi for all si ∈ S, System (6.1) can be
re-written as a system of linear inequalities:

Definition 6.1.1 (Cells as System of Linear Inequalities). Any cell σ ∈ T (S) can be
written as a system of linear inequalities and equalities σ = {Aσ

=x = bσ
=}∩{Aσ

+x ≥ bσ
+}

in the following way.

Fix a dual point skσ ∈ SIσ= . The matrix Aσ
= ∈ R|Iσ=|,d containing the equality constraints

has as its rows the vectors (akσ − ai|i ∈ Iσ=) and the corresponding vector bσ
= ∈ R|Iσ=|

has entries (bi − bkσ |i ∈ Iσ=) (in the same order).

Similarly, the matrix Aσ
+ ∈ R|Iσ+|,d containing the inequality constraints has as its rows

the vectors (akσ − ai|i ∈ Iσ+) and the corresponding vector bσ
+ ∈ R|Iσ+| has entries (bi −

bkσ |i ∈ Iσ+).

Remark 6.1.2. The joint system of linear equalities and linear inequalities in Defini-
tion 6.1.1 can be translated to a system of just inequalities

σ = {Aσx ≥ bσ} = {Aσ
=x = bσ

=} ∩ {Aσ
+x ≥ bσ

+}

by re-writing every equality as two inequalities. The resulting matrix Aσ ∈ R2|Iσ=|,d

contains the rows of Aσ
=, as well as their negatives, and the rows of Aσ

+. The vector
bσ ∈ R2|Iσ=| can be constructed analogously.

Using this representation of σ as a system of linear inequalities, the following propo-
sition describes the dimension of σ:

Proposition 6.1.3. Let S ⊆ D be a finite set of dual points and σ ∈ T (S) be a cell in the
tessellation induced by S. Then

dimσ = d− rankAσ
=. (6.2)

Proof. This follows directly from Lemma 2.3.10 and since Aσ
= contains all of the implicit

equality constraints by construction of Iσ= and Iσ+.

As a next step, we aim to understand how the cell σ looks in dual space. We start with
the following proposition:

Proposition 6.1.4. Let σ ∈ T (S) be a cell. Then the convex hull C(SIσ=) is a face in U(S) of
dimension

dim C(SIσ=) = rankAσ
=. (6.3)

Proof. We first show that C(SIσ=) is contained in a face of dimension rankAσ
=. As a

second step, we show that it is actually equal to such a face.

For simplicity, abbreviate ζ := C(SIσ=). By construction, we know that SIσ= ⊆ U∗(S). It
is thus left to show that

i) ζ is a face in U(S)

ii) dim ζ = rankAσ
=.
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We start with i). Assume towards a contradiction there existed a set of positive scalars
{α1, . . . , α|SIσ=

|} satisfying
∑|SIσ=

|
j=1 αj = 1 such that

∑
j∈Iσ=

αjR(sj) ̸∈ |U(S)| (the support
of the polyhedral complex U(S), see Definition 2.3.5).

Then, by Equation (3.2), ∑
j∈Iσ=

αjR(sj) < Q(S)

But, for any x ∈ σ,

Q(S)(x) ≥ R(si)(x)

=
∑
j∈Iσ=

αjR(si)(x)

=
∑
j∈Iσ=

αjR(sj)(x)

3.2.2
= R(

∑
j∈Iσ=

αjsj)(x).

This is a contradiction. We conclude i).

We now show ii). It holds that

dim ζ = dim C(SIσ=)
2.2.7
= dim

(
span

({
skσ − sj

∣∣ j ∈ Iσ= \ {kσ}}))
(∗)
= rank[Aσ

=| − bσ
=]

(∗∗)
= rankAσ

=.

Indeed, equality (∗) follows by identifying [Aσ
=| − bσ

=] with the matrix obtained by
stacking the points in skσ − SIσ= on top of each other. To see why equality (∗∗) holds,
note that the system Aσ

=x = bσ
= has a solution since σ is non-empty. But then also the

system Aσ
=x = −bσ

=. Hence, (∗∗) follows.

This shows ii) and concludes the first step.

For the second step, we show that ζ is already a face in U(S), not just contained in one.
Assume towards a contradiction it was not and let ξ be the smallest face containing ζ .
Then there would exist an sj ∈ ξ ∩ U∗(S) with j ∈ Iσ+ such that

dim ζ = dim C(SIσ= ∪ {sj}).

By Lemma 2.2.7, this would imply that

dim ζ = dim C(SIσ= ∪ sj) = dim
(
span

({
skσ − si

∣∣ i ∈ Iσ= \ {kσ}} ∪ {skσ − sj})
We claim that {sj − skσ} is linearly independent of

{
si − skσ

∣∣ i ∈ Iσ= \ {kσ}}, which
implies

dim ζ > dim
(
span

({
skσ − si

∣∣ i ∈ Iσ= \ {kσ}})) = rankAσ
=,
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a contradiction to ii).

Indeed, assume towards a contradiction that linear independence did not hold. Then
there would exist a set {αi} ⊆ R such that

skσ − sj =
∑
i

αi(skσ − si)

and thus, in particular, by linearity ofR,

(R(skσ)−R(sj)) (x) =
∑
i

αi (R(skσ)−R(si)) (x) = 0 ∀x ∈ σ .

This would imply that sj is an equality constraint for σ, a contradiction.

The last proposition tells us that C(Sσ
=) is a face in U(S). The next proposition uses

the face C(SIσ=) to explain how σ translates to dual space. But first, we define what it
means for an affine function to be tangent to an upper convex hull:

Definition 6.1.5. Given an affine function f : Rd → R, we say that f is tangent to the
upper convex hull U(S) if

i) f lies above U(S), i.e., f ⪰ U(S)

ii) and the graph of f intersects the upper convex hull, i.e., graph(f) ∩ U(S) ̸= ∅.

In this case, we write f ∥U(S).

Proposition 6.1.6 ([18, Proposition 18]). Let σ ∈ T (S) be a cell in the tessellation induced
by S. Then there is a one-to-one-correspondence between points in σ and dual planes tangent
to the upper convex hull of S which contain the face C(SIσ=):

{x ∈ σ} 1:1←→{f ∈ AffD(d)
∣∣ f ∥U(S) and f ⊇ C(SIσ=)}. (6.4)

Similarly, every face in U(S) defines a cell in this way.

Proof. By definition, σ is the region in Rd defined by a system{
R(si)(x) = R(si′)(x) ∀i, i′ ∈ Iσ=
R(si)(x) ≥ R(sj)(x) ∀i ∈ Iσ=, j ∈ Iσ+.

(6.5)

Using the notation introduced in Definition 2.2.1, this system can be re-written as{
(x, y) ∈ R(si) ∀i ∈ Iσ=
(x, y) ⪰ R(sj) ∀j ∈ Iσ+

(where y = Q(S)(x)). By Proposition 3.2.4, it can be translated to dual space:{
Ř−1((x, y)) ∋ si ∀i ∈ Iσ=
Ř−1((x, y)) ⪰ sj ∀j ∈ Iσ+.

(6.6)
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The first row in System (6.6) describes dual planes containing ζ := C(SIσ=). We claim
that the second row of System (6.6) restricts those to dual planes upper convex hull.
Indeed, for such a dual plane to be tangent to the upper convex hull, the following
needs to be true:

i) Ř−1((x, y)) ⪰ U(S)

ii) Ř−1((x, y)) ∩ U(S) ̸= ∅.

But this follows immediately from System (6.6). This shows one implication of the
proposition by establishing the one-to-one correspondence.

For the other implication, start with a face ζ ∈ U(S) and let I ⊆ {1, 2, . . . , n} be the set
indexing the points in S that lie on ζ . Reversing the argument by transitioning from
System (6.6) back to System (6.5) yields a cell σ ∈ T (S) with Iσ= = I .

By Proposition 6.1.4 and Proposition 6.1.6, cells in the tessellation induced by S are
closely related to faces in the upper convex hull of S. The following proposition makes
this relationship precise.

Theorem 6.1.7. There exists a one-to-one-correspondence between k-cells in T (S) and (d−k)-
faces in U(S). Specifically, the following map is a bijection:

Φ: Tk(S)
∼−→ Ud−k(S) (6.7)

σ 7→ C(SIσ=). (6.8)

Proof. We first show that the map is well-defined. Let σ ∈ Tk(S) be a k-cell and write
ζ := C(SIσ=). By Proposition 6.1.4, ζ is a face in U(S) of dimension

dim ζ = rankAσ
=. (6.9)

By Proposition 6.1.3,
k = dimσ = d− rankAσ

=. (6.10)

Thus, ζ ∈ Ud−k(S). This shows that Φ is well-defined.

Injectivity of Φ follows from the injectivity of the assignment σ 7→ Iσ=; every cell in
T (S) has a unique set of maximizers.

Finally, surjectivity of Φ can be proved as follows. Let ζ ∈ Ud−k(S) be a (d− k)-face.

Clearly, the set {f ∈ AffR(d)
∣∣ f ∥U(S) and f ⊇ ζ} is non-empty. By Proposition 6.1.6,

ζ corresponds to a cell σ ∈ T (S) with C(Iσ=) = ζ . By an argument analogous to the one
above, dimσ = k. This cell is a pre-image of ζ under Φ.

6.2 Application to the Decision Boundary

In this section, we use the bijection from Theorem 6.1.7 to characterize the decision
boundary of a ReLU binary classification network N = Q(P )−Q(N) : Rd → R.
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As a quick reminder, the networks decision boundary is given by

B = (Q(P )−Q(N))−1 (0).

Consequently, we are interested in studying zero-sets of DCPA functions. We start
with a special case.

Proposition 6.2.1 (Decision Boundary I [18, Proposition 19]). Let F = Q(P ) and G =
Q(N) be CPA functions Rd → R for some finite sets of dual points P,N ⊆ D. Assume that
no point of P lies on U(N) and vice versa. Let D be the zero-set of F −G. Then D is the union
of precisely those (d − 1)-cells of T (P ∪N) which (in the sense of Theorem 6.1.7) correspond
to edges (i.e., 1-faces) of U(P ∪N) with one end in P and the other end in N .

Proof. For ease of notation, enumerate N = {n1, . . . , nm} and P = {p1, . . . , pk} with
m, k ∈ N.

Fix x ∈ Rd. Then x lies in D if and only if Q(P )(x) = Q(N)(x), which by definition
means that max1≤i≤mR(ni)(x) = max1≤j≤kR(pj)(x). LetR(ni) andR(pj) be maximiz-
ers from both sides of the equation, respectively. Then x is contained in the cell σ
defined as the solution of the system

R(ni) = R(pj)
R(ni) ≥ R(nk) ∀k ∈ {1, . . . ,m} \ {i}
R(pj) ≥ R(pk) ∀k ∈ {1, . . . , k} \ {j}.

(6.11)

By Proposition 6.1.3, this cell has dimension

dimσ = d− rankAσ
= = d− 1. (6.12)

By the bijection in Theorem 6.1.7, such a cell corresponds to a dual 1-face (i.e., an
edge) of U(P ∪N) containing the vertex ni ∈ N and the vertex pj ∈ P . It could indeed
contain even more points which lie in the affine subspace spanned by pj and ni. See
Remark 6.2.4 for more details.

Since P ∩ U(N) = N ∩ U(P ) = ∅, such a face has to have one end in P and one end in
N . The correspondence constructed this way is clearly one-to-one.

Proposition 6.2.1 handles the special case that P∩U(N) = N∩U(P ) = ∅. The following
proposition handles the general case.

Proposition 6.2.2 (Decision Boundary II [18, Proposition 20]). Let F = Q(P ) and G =
R(N) be CPA functions Rd → R for some finite sets of dual points P,N ⊆ D. Let D be the
zero-set of F −G. Then D is the union of precisely those (d− 1)-cells of T (P ∪N) which (in
the sense of Theorem 6.1.7) correspond to edges of U(P ∪ N) containing points from both P
and N .

Proof. We start the proof as the one for Proposition 6.2.1 up to the identification of the
edges in the upper convex hull. Since P ∩ U(N) and N ∩ U(P ) need not be empty, we
can not conclude that edges in U(P ∪N) which contain both points from P andN have
to start in P and end in N . Thus, we have to require that the edge contains points from
both P and N .
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Figure 6.1: An example of points (P,N) (points in N are red, points in P are blue),
defining a ReLU network N = Q(P ) − Q(N) : R2 → R. There are four edges (light
blue) contributing to the decision boundary ofN , since they contain both red and blue
points. However, only three of them start and end in different colors.

For completeness, the following corollary applies these findings to neural networks.

Corollary 6.2.3. Let Q(P ) − Q(N) : Rd → R be a ReLU binary classification network in
the sense of Definition 2.1.5. Then the number of linear pieces in the decision boundary of N
equals the number of edges in U(P ∪N) containing points from both P and N .

Remark 6.2.4. The reader may encounter some confusion regarding the proof of Propo-
sition 6.2.1, as well as the necessity for the more general Proposition 6.2.2. We try to
clarify matters in this remark, which is accompanied by Figure 6.1.

Fix an x ∈ D and let R(ni) and R(pj) be maximizers of Q(N) and Q(P ), respectively,
as in the proof of Proposition 6.2.1. Denote by σ the 1-cell containing x and by ζ the
corresponding face.

To clarify the proof of Proposition 6.2.1, specifically Equation (6.12), assume there ex-
isted another vertex nk ∈ N which is a true convex combination of ni and pj , i.e., there
exists an α ∈ (0, 1) such that nk = αni + (1− α)pj . Then, clearly, nk lies on ζ .

By linearity ofR,R(nk) is also a maximizer of Q(N) on x. This shows that the system
of implicit equalities corresponding to σ is at least made up of ni, nk, pj . Relevant for
the dimension of σ, however, is just the rank of Aσ

=, and since ni, nk, pj are affinely
dependent, this is not a contradiction.

This should clarify the proof of Proposition 6.2.1. We now want to discuss the differ-
ence between Proposition 6.2.1 and Proposition 6.2.2. Generally, there are two different
ways to place the three points ni, nk, pj on ζ . In one arrangement, ζ starts in a point
from N , ends in a point from P and contains the third point, from N , in its interior. In
another setup, ζ starts and ends in N , containing the point from P in its interior (see
Figure 6.1 for an example). In both arrangements, one of the three points is a convex
combination of the other ones, explaining how all points can contribute a maximizer
on x. In both arrangements, the face ζ contains points from both P and N . But Propo-
sition 6.2.1 only allows for the first arrangement, while Proposition 6.2.2 allows for
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both.

To end this section, we compare the result of Proposition 6.2.2 to [12, Proposition
6.1.ii)], which is derived in the tropical setting and states that

B ⊆ H(Q(N)⊕Q(P )),

where we identify the (d− 1)-skeleton Td−1 with the tropical hypersurfaceH [12, Def-
inition 1], and think of Q(N) and Q(P ) as tropical signomials

Then, by Lemma 5.1.2.i),

H(Q(N)⊕Q(P )) = H(Q(P ∪N)) = Td−1(P ∪N).

Hence, [12, Proposition 6.1.ii)] gives an upper bound on the number of linear pieces in
the decision boundary by considering all (d − 1)-cells, not just the ones containing a
point from both P and N .

Example 6.2.5. In this subsection, we continue the toy-exampleN = Q(P )−Q(N) from
Example 5.2.6. By Corollary 6.2.3, the number of linear pieces in its decision boundary
is the same as the number of edges in U(P ∪N) containing points from both P and N .

Specifically, one can compute

U∗(P ∪N) = {(5, 19, 5), (0, 14, 7), (12, 5,−2)}

where (5, 19, 5), (12, 5,−2) ∈ U∗(P ) and (0, 14, 7) ∈ U∗(N) (see Figure 6.2). Thus, there
are three edges in U(P ∪N), two of which contribute to the networks decision bound-
ary since they contain vertices from both P and N . This confirms Figure 5.1b, which
shows the decision boundary of N and confirms that, indeed, it consists of two linear
pieces.
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Figure 6.2: Two-dimensional toy-example defined in Equation (5.12). Red points cor-
respond to N , blue points are P . The green polygon is U(P ∪N). Note that, in theory,
U(P ∪N) and is a polyhedral complex, i.e., it can consist of multiple facets. Note also
how there are red and blue points in U∗(P ∪N), ultimately contributing to the decision
boundary.
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Chapter 7

Characterizing Affine Regions

In Chapter 6, we used the upper convex hull of P ∪ N to characterize the decision
boundary of a ReLU binary classification network Q(P ) − Q(N). In this chapter, we
take a similar approach to better understand the k-cells in T (P,N). In particular, this
will enable us to count the network’s affine regions.

Any cell σ ∈ T (P,N) is of the form σ = σ′ ∩ σ′′ for some σ′ ∈ T (P ) and σ′′ ∈ T (N).
In Definition 6.1.1 and Remark 6.1.2, we saw how σ′ and σ′′ can be expressed as the
solution of a system of linear inequalities σ′ = {Aσ′

x ≥ bσ′}, σ′′ = {Aσ′′
x ≥ bσ′′}. This

induces a similar representation for σ:

σ =

{[
Aσ′

Aσ′′

]
x ≥

[
bσ′

bσ′′

]}
. (7.1)

Analogously to Chapter 6, we now turn our attention to the induced system of implicit
equalities.

Definition 7.0.1 (Refined Cells as System of Linear Inequalities). Let {Aσ′,σ′′
= x = bσ′,σ′′

= }
be the system of implicit inequalities in σ coming form σ′. That is, any row aσ′

i ∈ Aσ′,σ′′
=

is also a row in Aσ′ and satisfies

⟨aσ′

i ,x⟩ = bσ′

i ∀x ∈ σ′ ∩ σ′′.

We write Iσ
′,σ′′

= for the set indexing these implicit equality constraints. Generally,
Iσ

′
= ⊆ Iσ

′,σ′′
= , since the latter could contain constraints that only become implicit equal-

ity constraints in combination with σ′′ (see Figure 7.1 for an example).

Similarly, define the system of implicit equalities in σ coming from σ′′ as
{Aσ′′,σ′

= x = bσ′′,σ′
= }. That is, any row aσ′′

i ∈ Aσ′′,σ′
= is also a row in Aσ′′ and satisfies

⟨aσ′′

i ,x⟩ = bσ′′

i ∀x ∈ σ′ ∩ σ′′.

Again, let Iσ′′,σ′
= be the set indexing these implicit equality constraints.

The following proposition describes the dimension of σ in this setup:
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Figure 7.1: Example of a cell σ (green line) in the tessellation T (P,N), formed by the
intersection of a cell σ′ ∈ T (P ) (blue) and a cell σ′′ ∈ T (N) (red). Both σ′ and σ′′

have co-dimension one, each satisfying a single equality constraint. Their intersection
imposes an additional equality constraint, resulting in σ having co-dimension 2.

Proposition 7.0.2. Let σ = σ′ ∩ σ′′ ∈ T (P,N) be a cell in the tessellation induced by
Q(P )−Q(N). Then

dimσ = d− rank

[
Aσ′,σ′′

=

Aσ′′,σ′
= .

]
Proof. By Lemma 2.3.10,

dimσ = d− rank

[
Aσ′

Aσ′′

]
=

.

The proposition then follows from the fact that

rank

[
Aσ′

Aσ′′

]
=

= rank

[
Aσ′,σ′′

=

Aσ′′,σ′
= .

]
.

Indeed, both matrices contain the implicit equality constraints for σ = σ′ ∩σ′′. How-
ever, the matrix on the right hand side might contain duplicate rows if Iσ′,σ′′

= ∩ Iσ′′,σ′
= ̸=

∅.

Like derived for the decision boundary in the previous chapter, the next step is to
understand how σ appears in dual space. We begin with the following proposition:

Proposition 7.0.3. Let σ = σ′ ∩ σ′′ ∈ Tk(P,N) be a k-cell in the tessellation induced by
Q(P )−Q(N). Then

C(P
Iσ

′,σ′′
=

⊠NIσ
′′,σ′

=
) ∈ Ud−k(P ⊠N).

Proof. Like in the proof of Proposition 6.1.4, we first show that C(P
Iσ

′,σ′′
=

⊠NIσ
′′,σ′

=
) is

contained in a face in U(P ⊠N). To do so, however, we take a different approach by
first translating σ to dual-space. For simplicity, we abbreviate ζ := C(P

Iσ
′,σ′′

=
⊠NIσ

′′,σ′
=

).
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By definition, σ is the solution of the system
R(pi)(x) = R(pi′)(x) ∀i, i′ ∈ Iσ′,σ′′

=

R(pi)(x) ≥ R(pj)(x) ∀i ∈ Iσ′,σ′′
= , j ∈ Iσ

′,σ′′

+

R(nk)(x) = R(nk′)(x) ∀k, k′ ∈ Iσ′′,σ′
=

R(nk)(x) ≥ R(nl)(x) ∀k ∈ Iσ′′,σ′
= , l ∈ Iσ

′′,σ′

+ .

(7.2)

With the notation introduced in Definition 2.2.1, this system can be re-written as
(x, y1) ∈ R(pi) ∀i ∈ Iσ′,σ′′

=

(x, y1) ⪰ R(pj) ∀j ∈ Iσ
′,σ′′

+

(x, y2) ∈ R(nk) ∀k ∈ Iσ′′,σ′
=

(x, y2) ⪰ R(nl) ∀l ∈ Iσ
′′,σ′

+ ,

where y1 = Q(P )(x) and y2 = Q(N)(x). Using Proposition 3.2.4, the system can be
translated to dual space: 

Ř−1((x, y1)) ∋ pi ∀i ∈ Iσ′,σ′′
=

Ř−1((x, y1)) ⪰ pj ∀j ∈ Iσ
′,σ′′

+

Ř−1((x, y2)) ∋ nk ∀k ∈ Iσ′′,σ′
=

Ř−1((x, y2)) ⪰ nl ∀l ∈ Iσ
′′,σ′

+ .

(7.3)

Think of Ř−1((x, y1)) and Ř−1((x, y2)) as a pair of parallel hyperplanes, where the
former is tangent to U(P ) and contains the cell defined by the first line in System (7.3),
and the latter is parallel to U(N) and contains the cell defined by the third line in
System (7.3) (see the proof of Proposition 6.1.6 for details).

View these hyperplanes as subsets of Rd+1. Then their Minkowski sum satisfies

Ř−1((x, y1 + y2)) = Ř−1((x, y1)) ⊠ Ř−1((x, y2)) ⪰ p+ n ∀p ∈ P, n ∈ N. (7.4)

This means that Ř−1((x, y1 + y2)) is tangent to U(P ⊠N). Indeed, by Definition 6.1.5,
we need to check that

i) Ř−1((x, y1 + y2)) lies above U(P ⊠N), i.e. Ř−1((x, y1 + y2)) ⪰ U(P ⊠N)

ii) Ř−1((x, y1 + y2)) ∩ U(P ⊠N) ̸= ∅.

But i) follows directly from Equation (7.4) and ii) if we can show that ζ is contained in
Ř−1((x, y1 + y2)). But this follows from Equation (7.4) and lines 1 and 3 of System 7.3,
which imply that

Ř−1((x, y1 + y2)) = Ř−1((x, y1)) ⊠ Ř−1((x, y2)) ∋ pi + nk ∀i ∈ Iσ′,σ′′

= , nk ∈ Iσ
′′,σ′

= .

This shows that ζ is indeed contained inside a face in U(S) (see Figure 7.2 for a visual-
ization).

Continuing to mimic the proof of Proposition 6.1.4, we next show that

dim ζ = d− k.
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Y

Ř−1((x, y1 + y2))

P
Iσ

′,σ′′
=

⊠NIσ
′′,σ′

=

P ⊠N

Figure 7.2: Example of a set P
Iσ

′,σ′′
=

⊠NIσ
′′,σ′

=
(violet) in P ⊠N (black). If there ex-

ists a hyperplane Ř−1((x, y1 + y2)) tangent to U(P ⊠N) (orange) containing ζ =
C(P

Iσ
′,σ′′

=
⊠NIσ

′′,σ′
=

), then ζ has to be a face in U(P ⊠N).

But this follows from Lemma 2.2.8, which implies that

dim ζ = dim C(P
Iσ

′,σ′′
=

⊠NIσ
′′,σ′

=
)

= dim
(
span

({
pkσ′ − pi

∣∣ i ∈ Iσ′,σ′′

= \ {pkσ′}
}
∪
{
nkσ′′ − nk

∣∣ k ∈ Iσ′′,σ′

= \ {pkσ′′}
}))

= rank

[
Aσ′,σ′′

=

Aσ′′,σ′
=

∣∣∣∣ −bσ′,σ′′
=

−bσ′′,σ′
=

]
= rank

[
Aσ′,σ′′

=

Aσ′′,σ′
=

]
= d− k,

where in the last step we used Proposition 7.0.2.

Finally, as in the proof of Proposition 6.1.4, one can show that ζ is already a face in
U(S), by assuming it is not and arriving at a contradiction using Lemma 2.2.8.

The last proposition tells us that C(P
Iσ

′,σ′′
=

⊠NIσ
′′,σ′

=
) is a face in U(P ⊠N). As in the

previous chapter, the next proposition uses this face to explain how σ looks in dual
space:

Proposition 7.0.4 ([18, Proposition 22]). Let σ = σ′ ∩ σ′′ ∈ T (P,N) be a cell in the
tessellation induced by Q(P ) − Q(N). Then there is a one-to-one-correspondence between
points in σ and dual planes tangent to the upper convex hull U(P ⊠N) containing the face
C(P

Iσ
′,σ′′

=
⊠NIσ

′′,σ′
=

):

{x ∈ σ} 1:1←→{f ∈ AffD(d)
∣∣ f ∥U(P ⊠N) and f ⊇ C(P

Iσ
′,σ′′

=
⊠NIσ

′′,σ′
=

)}. (7.5)

Similarly, every face in U(P ⊠N) corresponds to a cell in this way.

Proof. The construction of the hyperplane Ř−1((x, y1 + y2)) and the face ζ in the proof
of Proposition 7.0.3 is unique for any x ∈ σ, which shows there exists an injection

{x ∈ σ} ↪→ {f ∈ AffD(d)
∣∣ f ∥U(P ⊠N) and f ⊇ C(P

Iσ
′,σ′′

=
⊠NIσ

′′,σ′
=

)}.
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Next, we show that this is actually a bijection. Let fa,b ∈ AffD(d) be a hyperplane
tangent to U(P ⊠N) that contains ζ . We need to show that −a ∈ σ (the additional −
comes from the fact that Ř−1((a, b)) = (−a, b)). Assume towards a contradiction that
−a ̸∈ σ, then there would either exist a pi ∈ PIσ

′,σ′′
+

and a pk ∈ PIσ
′,σ′′

=
s.t.

R(pi)(−a) > R(pk)(−a) (7.6)

or an nj ∈ NIσ
′′,σ′

+
and an nk ∈ NIσ

′′,σ′
=

s.t.

R(nj)(−a) > R(nk)(−a).

We will study the first case, the second one goes analogously. We claim it implies that

pi + nl ≻ fa,b (7.7)

for any nl ∈ NIσ
′′,σ′

=
, which would be a contradiction since fa,b ⪰ P ⊠N .

Indeed, assume Equation (7.6) was true and pick any nl ∈ NIσ
′′,σ′

=
. Then, since ζ ⊆ fa,b,

the following two equalities hold (the first one is just Equation (7.6)):{
R(pi)(−a) > R(pk)(−a)
pk + nl ∈ fa,b.

By Proposition 3.2.4 and linearity ofR, this system can be re-written as{
R(pi)(−a) > R(pk)(−a)
R(pk) +R(nl) ∋ (−a, b),

that is, {
R(pi)(−a) > R(pk)(−a)
R(pk)(−a) +R(nl)(−a) = b.

We conclude that
R(pi)(−a) +R(nl)(−a) > b,

which again can be re-written as

R(pi) +R(nl) ≻ (−a, b) = Ř(fa,b).

Equation (7.7) then follows from Proposition 3.2.4.2. and linearity of R. This finishes
the proof of the first implication of the Proposition.

As in the proof of Proposition 6.1.6, reversing the above argument shows the other
direction.

The following theorem makes precise the relationship between cells and faces that was
introduced in the previous two Propositions:
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Theorem 7.0.5 (Related to [18, Proposition 22]). There exists a one-to-one correspondence
between k-cells in T (P,N) and (d− k)-cells in U(P ⊠N). Specifically, the following map is
a bijection:

Ψ: Tk(P,N)
∼−→ Ud−k(P ⊠N)

σ = σ′ ∩ σ′′ 7→ C(P
Iσ

′,σ′′
=

⊠NIσ
′′,σ′

=
).

Proof. Follows from Proposition 7.0.3 and Proposition 7.0.4 similarly to how Theo-
rem 6.1.7 follows from Proposition 6.1.4 and Proposition 6.1.6.

7.1 Counting Affine Regions

In the special case where dimσ = d, the result in Theorem 7.0.5 allows counting the
number of affine regions defined by a ReLU network. Indeed, we will show in this
section how the affine regions can be constructed from Td(P,N) as a set of equivalence
classes. We will then translate this observation to dual space.

Let σ ∈ Td(P,N) be a d-cell in the tessellation induced by N := Q(P )−Q(N). Then N
is an affine map when restricted to σ. In particular, there exist a pσ ∈ P and an nσ ∈ N
such that

N (x) = (R(pσ)−R(nσ)) (x) = R(pσ − nσ) ∀x ∈ σ . (7.8)

However, two d-cells can define the same affine map:

Proposition 7.1.1. Let σ, σ′ ∈ Td(P,N) be two distinct d-cells. Then σ and σ′ define the
same affine map if and only if the corresponding vertices Ψ(σ) = pσ +nσ, Ψ(σ′) = pσ

′
+nσ′ ∈

U∗(P ⊠N) satisfy pσ − nσ = pσ
′ − nσ′ .

Proof. Follows directly from the definitions and Equation (7.8).

If two neighboring d-cells, i.e., two d-cells which share a (d − 1)-face, define the same
affine map, they are part of the same affine region. This implies that affine regions are
more coarse than Td(P,N). The rest of this section makes this observation more precise
and translates it to dual space.

Definition 7.1.2 (Adjacency). We make the following two definitions:

i) We say that two d-cells in Td(P,N) are adjacent if they share a (d− 1)-face.

i) We say two vertices p1 + n1, p2 + n2 ∈ U∗(P ⊠N) are adjacent if there exists an edge
ζ ∈ U1(P ⊠N) going from p1 + n1 to p2 + n2.

The following proposition relates these two notions of adjacency:

Proposition 7.1.3. Let σ1, σ2 ∈ Td(P,N) be two distinct d-cells. Then σ and σ′ are adjacent
if and only if the corresponding vertices Ψ(σ1) = p1 + n1, Ψ(σ2) = p2 + n2 ∈ U∗(P ⊠N) are
adjacent (that is, satisfy p1 − n1 = p2 − n2).
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σ′′
1

σ′′
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σ′
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1 ∩σ′′
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2

(a)

σ′′
2

σ′′
1

σ′
2

σ′
1

τ

σ1 = σ′
1 ∩σ′′

1

σ2 = σ′
2 ∩σ′′

2

(b)

Figure 7.3: Illustration of the two cases in the proof of Proposition 7.1.3. The blue
tessellation corresponds to T (P ), the red tessellation corresponds to T (N). The shaded
regions are the d-cells σ1 and σ2. Subfigure (a) shows the first case, where σ′

1 = σ′
2 but

σ′′
1 ̸= σ′′

2. Subfigure (b) shows the second case, where σ′
1 ̸= σ′

2 and σ′′
1 ̸= σ′′

2. In both
cases, the (d− 1)-cell τ is a face of both σ1 and σ2.

Proof. “⇒“: Let σ1 = σ′
1 ∩σ′′

1 and σ2 = σ′
2 ∩σ′′

2 with σ′
1, σ

′
2 ∈ Td(P ) and σ′′

1, σ
′′
2 ∈ Td(N)

be adjacent.

Then σ1 and σ2 share a (d− 1)-cell τ ∈ Td−1(P,N).

We claim that, in the sense of Theorem 7.0.5, τ corresponds to a face

Ψ(τ) = C({pσ1 + nσ1 , pσ2 + nσ2}). (7.9)

To see that this is true, differentiate two cases (see also Figure 7.3).

If pσ1 = pσ2 ,i.e., σ1 and σ2 are defined by the same d-cell σ′
1 = σ′

2 ∈ Td(P ), then Equa-
tion (7.9) follows directly from the fact that there is only one implicit equality con-
straint P σ′

1,σ
′
2

= = {pσ1} coming from P and Theorem 7.0.5.

We may thus assume that pσ1 ̸= pσ2 and nσ1 ̸= nσ2 . In this case, there are four implicit
equality constraint and

Ψ(τ) = C({pσ1 + nσ1 , pσ1 + nσ2 , pσ2 + nσ1 , pσ2 + nσ2}) ∈ U(P ⊠N)

We claim that pσ1 + nσ2 , pσ2 + nσ1 ̸∈ U∗(P ⊠N), which would show Equation (7.9).
Indeed, let H be the hyperplane defined by τ . Assume towards a contradiction that
pσ1 + nσ2 ∈ U∗(P ⊠N). Then, by Theorem 7.0.5, σ′

1 ∩σ′′
2 would be a d-cell in Td(P,N).

This is a contradiction since σ′
1 and σ′

2 lie on different sides of H. The same argument
shows that pσ2 + nσ1 ̸∈ U∗(P ⊠N).

“⇐“: Assume p1+n1, p2+n2 ∈ U∗(P ⊠N) are adjacent. Let σ1 = σ′
1∩σ′′

1 , σ2 = σ′
2∩σ′′

2 ∈
Td(P,N) be the two d-cells related to p1 + n1, p2 + n2 and τ ∈ Td−1(P,N) the (d− 1)-cell
related to the 1-face C({p1 + n1, p2 + n2}).

We claim that τ is a face of both σ1 and σ2, which would conclude the proof.
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By Theorem 7.0.5, it suffices to show that

C(P σ′
1,σ

′
2

= ⊠N
σ′′
1 ,σ

′′
2

= ) = C({p1 + n1, p2 + n2}).

But this follows analogously to Equation (7.9).

We can now construct the equivalence relation which will identify adjacent d-cells in
Td(P,N) defining the same affine function:

Definition 7.1.4 (Path of d-cells). A path of d-cells is a sequence (σ1, . . . , σn) ⊆ Td(P,N)
of d-cells such that

i) Q(P )−Q(N) defines the same affine map on σi and σi+1 for all i = 1, . . . , n− 1

ii) σi is adjacent to σi+1 for all i = 1, . . . , n− 1.

We write P(P,N) for the set of all paths of d-cells in Td(P,N).

Definition 7.1.5 (Equivalence of d-cells). Given two d-cells σ, σ′ ∈ Td(P,N), we write
σ ∼ σ′ if there exists a path of d-cells from σ to σ′.

Clearly, ∼ defines an equivalence relation.

By Proposition 7.1.3 and Proposition 7.1.1, this equivalence-relation translates to dual-
space. This motivates the following definition:

Definition 7.1.6 (Path of dual points). A path of dual points is a sequence
(pσ1 + nσ1 , . . . , pσn + nσn) ⊆ U∗(P ⊠N) of dual points such that

i) pσi + nσi is adjacent to pσi+1 + nσi+1 for all i = 1, . . . , n− 1

ii) pσi − nσi = pσi+1 − nσi+1 for all i = 1, . . . , n− 1.

We write P(P ⊠N) for the set of all paths of dual points in U∗(P ⊠N).

In particular, this definition induces an equivalence-relation ∼ on U∗(P ⊠N), where
p1+n1 ∼ p2+n2 if and only if there exists a path of dual points from p1+n1 to p2+n2.

The following proposition relates paths in Td(P,N) to paths in U∗(P ⊠N):

Proposition 7.1.7. There exists a one-to-one correspondence between paths of d-cells in
Td(P,N) and paths of dual points in U∗(P ⊠N). It is given by

Θ: P(P,N)→ P(P ⊠N)

(σ1, . . . , σn) 7→ (pσ1 + nσ1 , . . . , pσn + nσn).

Proof. Follows from Proposition 7.1.3 and Proposition 7.1.1.

We finally make precise the one-to-one correspondence between affine regions and
equivalence classes of d-cells in Td(P,N):

Corollary 7.1.8. There exists a one-to-one-correspondence between affine regions of a ReLU
network Q(P )−Q(N) : Rd → R and equivalence classes in U∗(P ⊠N)/ ∼.
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σ0 σ1 σ2 σ3

(a) Path of d-cells in Td(P,N)

pσ1 + nσ1

pσ2 + nσ2

pσ3 + nσ3

pσ0 + nσ0

(b) Path of dual points in U∗(P ⊠N)

Figure 7.4: Example for the one-to-one correspondence between paths of d-cells in
Td(P,N) and paths of dual points in U∗(P ⊠N) (Proposition 7.1.7). Subfigure (a)
shows a path of d-cells (σ1, σ2, σ3) (blue), consisting of adjacent cells that define the
same affine function. In dual space (Subfigure b), this corresponds to a path (thick,
blue) of adjacent vertices pσi + nσi with the property that pσi − nσi = pσj − nσj for all
i, j = 1, 2, 3.

Proof. Follows from Theorem 7.0.5 and the fact that ∼ identifies exactly adjacent cells
that are part of the same affine region.

To better understand the space U∗(P ⊠N)/ ∼, define an unweighted graphG = (V,E)
with vertices V := U∗(P ⊠N) ⊆ Rd+1 and edgesE := U1(P ⊠N). If d = 2, then clearly
G is planar.

The set U∗(P ⊠N)/ ∼ arises from the graph G by contracting exactly the paths in
P(P ⊠N) (see Figure 7.5).

Remark 7.1.9. We have seen above that d-cells in T (P,N) can be more fine than the
affine regions of N = Q(P ) − Q(N). Since also the activation regions [14, Definition
1] are generally finer than the affine regions [14, Lemma 3], one might ask whether
the d-cells in T (P,N) are the same as the activation regions. However, this is not the
case. As noted by Hanin and Rolnick [14, p.4], zeroing out a subnetwork may lead to
different activation patterns that coalesce into a single linear region.

Importantly, the zeroed-out subnetwork does not affect the upper convex hulls of P
andN and therefore does not influence the tessellation T (P,N). That is, two activation
patterns that only differ in the zeroed-out subnetwork do not influence T (P,N).

Therefore, ifN restricts to the same affine map on two adjacent cells σ1, σ2 ∈ Td(P,N),
two adjacent activation regions which do not just differ by a zeroed-out subnetwork
need to coalesce into the same affine region. We conjecture that this happens with
probability zero.

By the above argument, this means that the corresponding points p1+n1 and p2+n2 in
dual-space lie on the upper convex hull and satisfy p1−n1 = p2−n2. This furthermore
motivates the conjecture, as this seems to be unlikely.

The considerations in Remark 7.1.9 lead us to conjecture that, in networks with ran-
dom parameters, the d-cells are almost surely the same as the affine regions:
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Conjecture 7.1.10. The number of affine regions of a random ReLU network
Q(P )−Q(N) is almost surely equal to the number of points in U∗(P ⊠N).

Figure 7.5: An example of the graphG induced by the 1-skeleton U1(P ⊠N) for input-
dimension d = 2. By Corollary 7.1.8, the affine regions induced by Q(P ) − Q(N)
correspond to the vertices in the (multi)-graph G′ obtained from G by identifying all
the vertices along paths P ∈ P(P ⊠N) (red).

Remark 7.1.11. The argument put forward in this chapter can be generalized to net-
works N : Rd → Ro with output dimension o > 1. We leave this for future work. On a
high level, the above construction applies to every coordinate function fi, i = 1, . . . , o,
of the network. In the end, one has to study intersections of cells in each coordinate to
understand the tessellation induced by N .

Example 7.1.12. In this subsection, we continue the example of the toy network N =
Q(P ) − Q(N) from Example 5.2.6 and Example 6.2.5. By Corollary 7.1.8, the number
of affine regions defined byN corresponds to the number of vertices in U(P ⊠N)/ ∼.

Specifically, we compute

P ⊠N = {(7, 35, 10), (12, 34, 0), (4, 32, 8), (12, 34, 3), (3, 28, 11), (17, 24, 0), (13, 23, 2),
(11, 36, 1), (11, 36, 4), (14, 21, 3), (2, 30, 12), (16, 26, 1), (16, 26,−1), (10, 38, 7),
(10, 38, 4), (12, 19, 5), (6, 31, 8), (10, 38, 5), (6, 31, 11), (8, 33, 4), (11, 21, 6),

(8, 33, 7), (4, 32, 10), (8, 36, 6), (5, 33, 9), (6, 28, 6), (8, 36, 9), (13, 23, 4), (11, 36, 3),

(18, 22,−3), (5, 33, 12), (11, 36, 6), (5, 30, 7), (15, 22, 2), (7, 35, 5), (9, 34, 5),
(7, 35, 8), (9, 34, 8), (8, 33, 6), (14, 24, 3), (15, 19, 0), (8, 33, 9), (9, 31, 3),

(17, 24,−2), (9, 31, 6), (14, 21, 1), (10, 38, 2), (5, 30, 9), (7, 35, 7)}

and

U∗(P ⊠N) = {(18, 22,−3), (15, 19, 0), (10, 38, 7), (12, 19, 5),
(17, 24, 0), (2, 30, 12), (3, 28, 11), (5, 33, 12)}

One can quickly see that P(P ⊠N) = ∅, i.e., there are no adjacent dual points p1 +
n1, p2 + n2 ∈ U∗(P ⊠N) satisfying p1 − n1 = p2 − n2.

This implies U∗(P ⊠N)/ ∼= U∗(P ⊠N) = 8, and N thus defines 8 affine regions.
This is confirmed by Figure 5.1a, which plots the tessellation induced by N and con-
tains 8 affine regions.
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Figure 7.6: Two-dimensional toy-example defined in Equation (5.12). Purple points
correspond to P ⊠N . The purple polygon is U(P ⊠N).
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Chapter 8

Telgarsky’s Sawtooth Network

We use this chapter to familiarize ourselves with the dual representation by specifi-
cally constructing it for a known network.

In his seminal work [15] , Telgarsky constructed a binary classification problem for 2k

points which every shallow network with fewer than exponentially many nodes (n k)
can not classify. In this chapter, we study this construction in the dual setting.

We furthermore present numerical experiments which provide evidence for the vol-
ume hypothesis.

8.1 Problem Setting

We start by introducing Telgarsky’s main results [15]. Define R(ρ0;m,L) to be the class
of neural networks with L layers, at most m nodes in each layer, output-dimension 1
and ReLU activations. Given a networkN ∈ R(ρ0;m,L), we denote by Ñ the induced
binary classifier and by L(N ) the classification error of Ñ , given a dataset (for more
details, see [15]).

The main theorem reads:

Theorem 8.1.1 ([15, Theorem 1.1]). Let k be a positive integer, L the number of layers, m
the number of nodes per layer with m ≤ 2(k−3)/(L−1). Then there exists a collection of n := 2k

points ((xi, yi))i=1,...,n with xi ∈ [0, 1] and yi ∈ {0, 1} such that

min
N∈R(ρ0;2,2k)

L(N ) = 0 and min
M∈R(ρ0;m,l)

L(M) ≥ 1

6
.

Telgarsky’s proof is constructive. The collection of points is the k-ap:

Definition 8.1.2 (The k-ap). The k-ap (k-alternating-point problem) is the set of 2k uni-
formly spaced points within [0, 1− 2−k] with alternating labels. That is, ((xi, yi))i=1,...,k

with xi = i2−k and yi = 0 if i is even and yi = 1 otherwise.

To construct a narrow network that can correctly classify the k-ap, he introduces the
mirror-map:
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Definition 8.1.3 (Mirror-Map). The mirror-map is defined as

fm : R→ R

x 7→


2x 0 ≤ x ≤ 1

2

2(1− x) 1
2
≤ x ≤ 1

0 otherwise.

This mirror-map can be represented as a ReLU network:

Lemma 8.1.4. The mirror-map fm can be written as

fm(x) = fm(x)

where fm(x) ∈ R(ρ0; 2, 2) is a neural network given by

fm(x) = ρ0 (W2 · ρ0 (W1 · x+ b1))

with

W1 =

(
1
1

)
, b1 =

(
0
−1

2

)
, W2 =

(
2 −4

)
.

In order to show Theorem 8.1.1, Telgarsky actually proves the following, stronger
statement:

Theorem 8.1.5 ([15, Theorem 1.2]). Let k,m,L ∈ N be positive integers. Given a
t-sawtooth1 s : R→ R and n := 2k points specified by the k-ap, then

min
N∈R(ρ0;2,2;k)

L(N ) = 0 and min
M∈R(s;m,L)

L(M) ≥ n− 4(tm)k

3n
.

The proof uses the following lemma for the lower bound, which shows that the mirror-
map fm concatenated with itself k-times2 correctly classifies the k-ap:

Lemma 8.1.6. On the 2k points specified by the k-ap,

L(fk
m) = 0.

Telgarsky’s construction incentivizes the use of deep networks, since it shows that
shallow networks with fewer than exponentially many (in k) nodes have an error of
at least 1/6 on the k-ap, whereas there exists a deep recurrent network with 2 nodes in
each of the 2k layers achieving zero error.

1a t-sawtooth is a piecewise affine function with t pieces
2The k-fold concatenation of fm with itself is what gives this construction its name, since fk

m looks
like the teeth of a saw.
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8.2 The Dual Representation

In this section, we study the dual representation of powers of fm. By Lemma 8.1.4, fk
m

can be written as a recurrent neural network of depth 2k and width 2 for any k ∈ N.

Given two non-negative integers a ≤ b, we introduce the short-hand notation [a : b] :=
{a, a+ 1, . . . , b− 1, b}.

The following proposition establishes a recursive formulation for the dual representa-
tion of fk

m:

Proposition 8.2.1. Let (P2k, N2k) denote the dual representation of fk
m. Then the dual repre-

sentation of fk+1
m is given by

N2(k+1) =
(
4N2k ⊠ 2N2k ⊠{0}

)
∪
(
4N2k ⊠ 2N2k ⊞−2 ⊠{0}

)
∪
(
4P2k \N2k ⊠ 2N2k ⊞−2

)
P2(k+1) =

(
4N2k ⊠ 2N2k ⊠{0}

)
∪
(
4N2k ⊠ 2P2k \N2k

)
∪N2(k+1).

Proof. Since fm : R → R has output-dimension equal to 1, the vectors N2k and P2k just
contain one set of dual points each. We identify them with these sets.

By Lemma 8.1.4, computing fk+1
m comes down to post-composing a 2-layer-network

with a 2k-layer-network. After post-composing the first layer of fm with fkm, by Propo-
sition 5.1.7 the dual representation (N2k+1, P2k+1) takes the form

(N2k+1)i = (W−
1 )i1P2k ⊠(W

+
1 )i1N2k (8.1)

= {0} ⊠N2k (8.2)

and

(P2k+1)i = (W+
1 )i1P2k ⊠(W

−
1 )i1N2k ⊞ (b1)i ∪ (N2k+1)i (8.3)

= P2k ⊞ (b1)i ∪ ({0} ⊠N2k). (8.4)

for i = 1, 2. Note that we keep ⊠{0} in the above calculations since N0 = ∅ and
∅+ {0} := {0} ≠ ∅ (corresponds to k = 0 in the proof of Corollary 5.1.8).

In order to compute the second post-composed layer, note that N2k ⊆ P2k and thus

P2k = N2k ∪ P2k \N2k.

Furthermore, the set union distributes over the Minkowski sum s.t.

N2(k+1) = (W−
2 )11(P2k+1)1 ⊠(W

−
2 )12(P2k+1)2 + (W+

2 )11(N2k+1)1 ⊠(W
+
2 )12(N2k+1)2

= 4(P2k+1)2 ⊠ 2(N2k+1)1

(8.3),(8.1)
= 4(P2k ⊞−

1

2
∪ {0} ⊠N2k) ⊠ 2({0} ⊠N2k)

= (4P2k ⊞−2 ⊠ 2N2k) ∪ (2N2k ⊠ 4N2k ⊠{0})
=
(
4 (N2k ∪ P2k \N2k)⊞−2 ⊠ 2N2k

)
∪
(
4N2k ⊠ 2N2k ⊠{0}

)
=
(
4N2k ⊠ 2N2k ⊠{0}

)
∪
(
4N2k ⊠ 2N2k ⊞−2 ⊠{0}

)
∪
(
4P2k \N2k ⊠ 2N2k ⊞−2

)
68



and

P2(k+1) = (W+
2 )11(P2k+1)1 ⊠(W

+
2 )12(P2k+1)2 ⊠(W

−
2 )11(N2k+1)1 ⊠(W

−
2 )12(N2k+1)2∪N2k

= 2(P2k+1)1 ⊠ 4(N2k+1)2 ∪N2(k+1)

(8.3),(8.1)
= 2(P2k ∪ {0 ⊠N2k} ⊠ 4({0 ⊠N2k}) ∪N2(k+1)

=
(
2N2k ⊠ 4N2k ⊠{0}

)
∪
(
4N2k ⊠{0} ⊠ 2P2k

)
∪N2(k+1)

=
(
2N2k ⊠4N2k ⊠{0}

)
∪
(
4N2k ⊠ 2N2k ⊠{0}

)
⊠
(
4N2k ⊠ 2P2k \N2k

)
∪N2(k+1)

=
(
4N2k ⊠ 2N2k ⊠{0}

)
∪
(
4N2k ⊠ 2P2k \N2k

)
∪N2(k+1).

This finishes the proof.

Remark 8.2.2. We note two observations related to Proposition 8.2.1:

i) For k ≥ 1, it holds that P2k, N2k ̸= ∅ and one can drop the ⊠{0}.

ii) The reader may wonder why we introduced P2k \ N2k in the proof of the Propo-
sition. However, while this artificial step complicates the recursive identities for
P2(k+1) andN2(k+1), it will pay of later. Indeed, we will see that computingN2k and
P2k \N2k is easier than computing N2k and P2k directly.

Next, we define the following two quantities:

Definition 8.2.3. For any j ∈ N, we define

hj0 := 2
6j − 1

5

gj0 :=
3j − 1

2
.

Remark 8.2.4. Interestingly, hj0 and gj0 are the values that powers of certain functions
take at zero. Indeed, define the two helper-functions f : R → N, h(x) = 6x + 2 and
g : R→ N, g(x) = 3x+ 1. Then

hj0 = 2
6j − 1

5
=

j−1∑
i=0

2 · 6i

gj0 =
3j − 1

2
=

j−1∑
i=0

3i.

The following are useful helping Lemmas:

Lemma 8.2.5. The following equations of sets hold:

[0 : 3k] =
[
0 : 3k−1

]
⊠ 2
[
0 : 3k−1

]
(8.5)

[1 : 3k − 1] =
[
0 : 3k−1

]
⊠ 4
[
0 : gk−1

0

]
+ 1 (8.6)[

0 : gk0
]
=
[
0 : 3k−1

]
⊠
[
0 : gk−1

0

]
(8.7)
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(a) k=1 (b) k=2 (c) k=3 (d) k=4

Figure 8.1: Unreduced representation of the sawtooth function fk
m for k = 1, 2, 3, 4

(points in P are red and points in N are blue). One vertical “pillar“ corresponds to
the inner union in Proposition 8.2.6. The horizontal structure, i.e. the lining up of the
vertical pillars, corresponds to the outer union.

Proof. The proof is straight forward. We still provide it for completeness, starting with
Equation (8.5). Note that

2
[
0 : 3k−1

]
⊠{0, 1} = [0 : 2 · 3k−1 + 1]

and thus
2
[
0 : 3k−1

]
⊠
[
0 : 3k−1

]
= [0 : 2 · 3k−1 + 3k−1] =

[
0 : 3k

]
.

For Equation (8.6), proceed analogously:

4[0 : gk−1
0 ] ⊠{0, 1, 2, 3} = [0 : 4gk−1

0 + 3] = [0 : 2(3k−1 − 1) + 3]

and thus [
0 : 3k−1

]
⊠ 4[0 : gk−1

0 ] = [0 : 3k−1 + 2(3k−1 − 1)] = [0 : 3k − 2].

Finally, for Equation (8.7),

[
0 : 3k−1

]
⊠[0 : gk−1

0 ] =

[
0 : 3k−1 +

3k−1 − 1

2

]
= [0 : gk0 ].

This concludes the proof.

With these helping Lemmas at hand, the following proposition provides a recursive
formulation for the dual representation of the sawtooth function:

Proposition 8.2.6. Assume that the dual representation of fk
m with l ≥ 2 can be written as

N2k =
3k−1⋃
j=0

⋃
a∈S(k,j)

{(j2k+1,−hk−1
0 − j2k + 2a)} (8.8)

and
P2k = N2k ⊔H2k,

where

H2k =

gk−1
0⋃
j=0

⋃
b∈Z(k,j)

{(2k + j2k+2, 2k − 2− hk−1
0 − j2k+1 + 8b)} (8.9)
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for some sets S(k, j), Z(k, j) ⊆ N. Then Equation (8.8) and Equation (8.9) also hold for k+1.
The sets S(k + 1, q), q ∈ [0 : 3k], are given by

S(k + 1, q) =

{
S ′(k + 1, q), q ∈ {0, 3k}
S ′(k + 1, q) + S ′′(k + 1, q) o.w.,

where

S ′(k + 1, q) := {4o+ 2p+ δ
∣∣ δ ∈ {0, 1},∃i, j ∈ [0 : 3k−1] s.t. q = 2i+ j,

o ∈ S(k, i), p ∈ S(k, j)}

and

S ′′(k + 1, q) := {3 · 2k − 4 + 2o+ 16p
∣∣∃i ∈ [0 : 3k−1], j ∈ [0 : gk−1

0 ] s.t. q = i+ 4j + 1,

o ∈ S(k, i), p ∈ Z(k, j)}

The sets Z(k + 1, q), q ∈ [0 : gk0 ], are given by

Z(k + 1, q)={o+ 2p
∣∣∃i ∈ [0 : 3k−1], j ∈ [0 : gk−1

0 ] s.t. q = i+ j, o ∈ S(k, i), p ∈ Z(k, j)}.

Proof. Since N2k ⊆ P2k, note first that H2k = P2k \N2k.

We start by showing that Equation (8.8) also holds for k+1 with the defined S(k+1, ·).

By Proposition 8.2.1,
N2(k+1) = A ∪B ∪ C

where

A := 4N2k ⊠ 2N2k

B := 4N2k ⊠ 2N2k ⊞−2
C := 4P2k \N2k ⊠ 2N2k ⊞−2.

We start by computing A:

A = 4N2k ⊠ 2N2k

= {
(
4i2k+1,−4hk−1

0 − 4i2k + 4 · 2o
) ∣∣ i ∈ [0 : 3k−1

]
, o ∈ S(k, i)}

⊠{
(
2j2k+1,−2hk−1

0 − 2j2k + 2 · 2p
) ∣∣ j ∈ [0 : 3k−1

]
, p ∈ S(k, j)}

=
{(

2k+2(2i+ j),−hk0 − 2k+1(2i+ j) + 8o+ 4p+ 2
) ∣∣∣∣ i, j ∈ [0 : 3k−1

]
, o ∈ S(k, i), p ∈ S(k, j)

}
=
{(

2k+2q,−hk0 − 2k+1q + 2(4o+ 2p+ 1)
) ∣∣∣∣ ∃i, j ∈ [0 : 3k−1] s.t. q = 2i+ j, o ∈ S(k, i), p ∈ S(k, j)

}
.

Since B = A⊞−b, it follows readily that

B =
{(

2k+2q,−hk0 − 2k+1q + 2(4o+ 2p)
) ∣∣∣∣∃i, j ∈ [0 : 3k−1] s.t. q = 2i+ j, o ∈ S(k, i), p ∈ S(k, j)

}
,
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from which we conclude, using Equation (8.5) and the definition of S ′(k + 1, q), that

A ∪B =
{(

2k+2q,−hk0 − 2k+1q + 2r
∣∣ q ∈ [0 : 3k

]
, r ∈ S ′(k + 1, q)

) ∣∣} .
Finally,

C = 4P2k \N2k ⊠ 2N2k ⊞−2
=
{(

4 · 2k+4j2k+2, 4 · 2k−8−4hk−1
0 −4j2k+1+32p−2

) ∣∣ j ∈ [0 : gk−1
0

]
, p ∈ Z(k, j)

}
+
{(
2i2k+1,−2hk−1

0 − 2i2k + 4o
)∣∣i ∈ [0 : 3k−1

]
, o ∈ S(k, i)

}
=
{(

2k+2(i+ 4j + 1),−hk0 − 2k+1(i+ 4j + 1) + 2k+2 + 2k+1 − 8 + 32p+ 4o
) ∣∣∣∣ i ∈ [0 : 3k−1

]
, o ∈ S(k, i), j ∈

[
0 : gk−1

0

]
, p ∈ Z(k, j)

}
=
{(

2k+2(i+ 4j + 1),−hk0 − 2k+1(i+ 4j + 1) + 3 · 2k+1 − 8 + 32p+ 4o
) ∣∣∣∣ i ∈ [0 : 3k−1

]
, j ∈

[
0 : gk−1

0

]
, o ∈ S(k, i), p ∈ Z(k, j)

}
=
{(

2k+2q,−hk0 − 2k+1q + 2(3 · 2k − 4 + 16p+ 2k)
) ∣∣∣∣ ∃i ∈ [0 : 3k−1

]
, j ∈

[
0 : gk−1

0

]
s.t. q = i+ 4j + 1, o ∈ S(k, i), p ∈ Z(k, j)

}
=
{(
2k+2q,−hk0 − 2k+1q + 2r

)∣∣q∈ [1 : 3k−1], r∈S ′′(k+1, q)
}
,

where in last step we used Equation (8.6) and the definition of S ′′(k + 1, q).

Putting together these results for A∪B and C shows that Equation (8.8) also holds for
N2k with S(k + 1, ·) defined as in the Proposition.

It remains to show that Equation (8.9) holds for k + 1 as well. Note again that, since
N2(k+1) ⊆ P2(k+1), we can again identifyH2(k+1) = P2(k+1)\N2(k+1). By Proposition 8.2.1,
this implies that

H2(k+1) = H ′
2(k+1) \N2(k+1), where H ′

2(k+1) := 4N2k ⊠ 2P2k \N2k.

As a first step, we compute H ′
2(k+1) to be

H ′
2(k+1) = 4N2k ⊠ 2P2k \N2k

=
{(

4i2k+1,−4hk−1
0 − 4i2k + 8o

) ∣∣ i ∈ [0 : 3k−1
]
, o ∈ S(k, i)

}
⊠
{(
2 · 2k+2j2k+1, 2 · 2k−4−2hk−1

0 −2j2k+1+16p
) ∣∣ j ∈ [0 : gk−1

0

]
, p ∈ Z(k, j)

}
=
{(

2k+1 + 2k+3(i+ j), 2k+1 − 2− hk0 − 2k+2(i+ j) + 8o+ 16p
) ∣∣∣∣ i ∈ [0 : 3k−1

]
, j ∈

[
0 : gk−1

0

]
, o ∈ S(k, i), p ∈ Z(k, j)

}
=
{(

2k+1 + 2k+3q, 2k+1 − 2− hk0 − 2k+2q + 8(o+ 2p)
) ∣∣∣∣∃i ∈ [0 : 3k−1

]
, j ∈

[
0 : gk−1

0

]
s.t. q = i+ j, o ∈ S(k, i), p ∈ Z(k, j)

}
=
{(
2k+1 + 2k+3q, 2k+1 − 2− hk0 − 2k+2q + 8r

) ∣∣ q ∈ [0 : gk0
]
, r ∈ Z(k + 1, q)

}
,

where in the last step we used Equation (8.7) and the definition of Z(k + 1, q).

Comparing this result with the above result for N2(k+1), we can see that
H ′

2(k+1) ∩N2(k+1) = ∅ (the x-coordinates can’t match) and thus

H ′
2(k+1) = H2(k+1).

This shows Equation (8.9) also holds for N + 1 and concludes the proof.
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An example of the dual representation derived in Proposition 8.2.6 can be found in
Figure 8.1.

We conjecture that S(k, j) and Z(k, j) are actually contiguous in N:3

Conjecture 8.2.7. For every k ≥ 1 and j ∈
[
0 : 3k−1

]
, let s(k, j) := maxS(k, j) and

z(k, j) := maxZ(k, j). Then

S(k, j) = [0 : s(k, j)]

Z(k, j) = [0 : z(k, j)].

The following proposition starts the induction for Proposition 8.2.6:

Proposition 8.2.8. For k = 2, the sawtooth-function f 2
m has dual representation as given in

Proposition 8.2.6.

Proof. A simple calculation using Proposition 8.2.1 shows that

N4 = {(0, 0), (0,−2)
(8,−2), (8,−4), (8,−6)
(16,−6), (16,−8), (16,−10)
(24,−12), (24,−14)}.

A simple calculation reveals that N4 can consequently be written as

N4 =
3⋃

j=0

⋃
a∈S(2,j)

{(8j,−2− 4j + 2a)}

=
3k−1⋃
j=0

⋃
a∈S(k,j)

{(j2k+1,−hk−1
0 − j2k + 2a)}

where

S(2, 0) = {0, 1}
S(2, 1) = {0, 1, 2}
S(2, 2) = {0, 1, 2}
S(2, 3) = {0, 1}.

The set N4 is plotted in blue in Figure 8.1b.

Similarly, one can show using Proposition 8.2.1 that

P4 \N4 = {(4, 0), (20,−8)},

3at least this seems to hold computationally. Remains to be shown.
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which can be written as

P4 \N4 =
1⋃

j=0

⋃
b∈Z(k,j)

{(4 + 16j,−8j + 8b)}

=

gk−1
0⋃
j=0

⋃
b∈Z(k,j)

{(2k + j2k+2, 2k − 2− hk−1
0 − j2k+1 + 8b)}

where

Z(2, 0) = {0}
Z(2, 1) = {0}.

The points in P4 are plotted in red in Figure 8.1b.

Restricting the sets P2k and N2k to their upper convex hulls, the following theorem
provides the reduced dual representation of fk

m:

Theorem 8.2.9. For any integer k ≥ 2, the sawtooth-function fk
m can be represented as

fk
m = Q(P2k)−Q(N2k) with

N2k = {(j2k+1,−hk−1
0 − j2k + 2s(k, j))

∣∣ j ∈ [0 : 3k−1
]
} (8.10)

and
P2k = N2k ⊔H2k,

where

H2k = {(2k + j2k+2, 2k − 2− hk−1
0 − j2k+1 + 8z(k, j))

∣∣ j ∈ [0 : gk−1
0

]
} (8.11)

for some integers s(k, j), z(k, j) ∈ N. We call this the reduced representation of fk
m.

Proof. Follows from Proposition 8.2.6, Proposition 8.2.8 and Corollary 3.3.3.

We conclude this section by pointing out how Theorem 8.2.9 supports Conjec-
ture 5.1.20; both P2k and N2k are way bigger than U∗(P2k) and U∗(N2k), respectively
(only the uppermost points of the vertical pillars from Proposition 8.2.6 lie in the up-
per convex hulls, see Figure 8.1).

8.3 Experiments

The careful design of the sawtooth function ensures that it has a high number of break-
points. In this section, we study how the complexity of the decision boundary and the
number of affine regions change if the carefully designed weights and biases are ran-
domized.

Define frand
m to be the following random function:

frand
m : R→ R

x 7→W2 · ρ0(W1 · x+ b1) + b2
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Figure 8.2: A "flattened cone", resulting from W1 = (−1, 1)T , W2 = (−4,−4), b1 =
(1/4,−3/4)T , b2 = 1.

for some random matrices W1 ∈ R1,2, W2 ∈ R2,1 with i.i.d. Gaussian entries and
vectors b1 ∈ R2, b2 ∈ R with i.i.d. Gaussian entries. We write frand

m ∼ Nrand for a
random function (“block“) of that form.

Remark 8.3.1. The reader might notice that, compared to the deterministic case in
Lemma 8.1.4, this definition is missing the outer nonlinearity. Indeed, for n > 1, we
could also have discarded it in the deterministic case. However, we chose to stay close
to the original construction in [15]. In particular, the reduced representation (Theo-
rem 8.2.9) is the same with or without the outer nonlinearity. In the random case, we
go without the nonlinearity in order to restrict the network’s effective number of ReLU
layers.

Definition 8.3.2. Given a, b ∈ N0, we define N(a, b) to be the distribution of neural
networks obtained by concatenating a consecutive deterministic blocks with b consec-
utive random blocks. That is,

f rand
m,1 ◦ . . . ◦ f rand

m,b︸ ︷︷ ︸
b times

◦ fm ◦ . . . ◦ fm︸ ︷︷ ︸
a times

∼ N(a, b)

for frand
m,1 , . . . , f

rand
m,b ∼ Nrand.

For the following experiments, we use Conjecture 7.1.10 to count the number of affine
regions defined by a network randomly drawn from N(a, b), and Proposition 6.2.2 to
assess its decision boundaries complexity.

Figure 8.3a shows the behavior of both complexity measures, given a fixed network
depth but a varying ratio of random blocks to deterministic blocks.

There, it is evident that both the complexity of the decision boundary and the number
of affine regions grow more slowly or even decay compared to a purely deterministic
sawtooth network. This provides evidence that the exponential complexity regime
(introduced in Section 1.2) is unstable/sharp. In order to enter the regime, Telgarsky
carefully constructed the weights and biases, enabling exponential complexity (in the
number of layers).

As soon as the carefully constructed parameters are replaced by random ones,
the network quickly transitions to the subexponential complexity regime with sub-
exponential complexity (compare the blue line and the red dashed line in Figure 8.3a).
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(a) Counting affine regions

(b) Counting Decision Boundary Pieces

Figure 8.3: Counting affine regions (Subfigure (a)) and transitions (Subfigure (b)) in
different settings. Networks are made up of k = 7 blocks. Graphs in Subfigure (a)
show |U∗(P2k ⊠N2k)|, i.e. the number of affine regions, after every block l ≤ k, and
graphs in Subfigure (b) count the number of edges between P2k and N2k in U(P2k ∪
N2k). Inside Subfigure, from the top left to the bottom right, the networks are first
drawn from N(0, 7), then from N(1, 6) etc. The red dashed line indicates the number
of affine regions (transitions) of a purely deterministic sawtooth network. Shaded
regions indicate percentiles, starting from 70% and going to 95% is steps of 5%. The
blue line is the empirical mean.

76



Remark 8.3.3. Note that, as shown in Figure 8.3a, it is possible, though unlikely, for
a (partially) random network to have more affine regions than a purely determinis-
tic sawtooth network. This can occur if all the breakpoints associated with the first
random subnetwork fall within the interval [0, 1]. For instance, a random layer may
resemble a "flattened cone" (see Figure 8.2), resulting in more affine regions than a
regular cone in Telgarsky’s construction.

Finally, Algorithm 2 and Algorithm 3 show how we compute the number of d-cells
and the number of linear pieces in the decision boundary of a given ReLU network.

Algorithm 2 Counting Boundary Complexity

1: Input: Neural network N : Rd → R with L layers, sample x ∈ Rd

2: Output: Boundary complexity of N
3:
4: Initialize P0 = ({(e1, 0), . . . , (ed, 0)}) and N0 = (∅)
5: for layer l = 1 to L do
6: Decompose Wl into positive part W+

l and negative part W−
l

7: Compute Nl = (W−
l Pl−1) ⊠(W

+
l Nl−1)

8: Compute Pl =
((
(W+

l Pl−1) ⊠(W
−
l Nl−1)

)
⊞ bl

)
∪ (Nl ⊞ tl)

9: end for
10:
11: Find the upper convex hull U(PL ∪NL)
12: for each 1-cell (edge) in U(PL ∪NL) do
13: if the 1-cell joins a point in PL to a point in NL then
14: Mark as a boundary piece
15: end if
16: end for
17: Return: Total boundary piece count

Algorithm 3 Counting affine regions

1: Input: Neural network N : Rd → R with L layers, sample x ∈ Rd

2: Output: Number of d-cells defined by N
3:
4: Initialize P0 = ({(e1, 0), . . . , (ed, 0)}) and N0 = (∅)
5: for layer l = 1 to L do
6: Decompose Wl into positive part W+

l and negative part W−
l

7: Compute Nl = (W−
l Pl−1) ⊠(W

+
l Nl−1)

8: Compute Pl =
((
(W+

l Pl−1) ⊠(W
−
l Nl−1)

)
⊞ bl

)
∪ (Nl ⊞ tl)

9: end for
10:
11: Find the upper convex hull U(PL ⊠NL)
12: Return: The number of vertices in U∗(PL ⊠NL).
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Chapter 9

One Layer – Random Weights

Having familiarized ourselves with the dual representation by explicitly constructing
it for the sawtooth function, we devote the remainder of this work to studying the
volume hypothesis. We begin with a quick recap.

Chapter 5 established a dual representation N = Q(P ) − Q(N) for every fully con-
nected feedforward networkN with ReLU activations. The complexity ofN is closely
tied to properties derived from upper convex hulls associated with its dual representa-
tion. By Corollary 7.1.8, the number of affine regions induced byN equals the number
of vertices in U(P ⊠N)/ ∼. Moreover, Proposition 6.2.2 states that the number of
linear pieces within the decision boundary equals the number of edges in U(P ∪ N)
containing points from both P and from N .

In Chapter 8, we computed the dual representation of Telgarsky’s sawtooth network.
Experiments confirmed the instability of the exponential complexity regime, as ran-
domizing the last layers resulted in a sub-exponential number of affine regions. In this
chapter, we analyze this phenomenon by explicitly computing the marginal gain in
complexity achieved by appending a random ReLU layer to a deterministic network.

Since the dual representation of the sawtooth function is challenging to handle (see
Theorem 8.2.9), we consider a slight simplification thereof.

Throughout this section, let n ≥ 2 be an integer. We now introduce the deterministic
subnetwork mathematically.

Let N0 and P0 be sets of n+ 1 points each, defined by

N0 =

{(
cos

(
π

2

2j

2n+ 1

)
, sin

(
π

2

2j

2n+ 1

)) ∣∣ 0 ≤ j ≤ n

}
P0 =

{(
cos

(
π

2

2j + 1

2n+ 1

)
, sin

(
π

2

2j + 1

2n+ 1

)) ∣∣ 0 ≤ j ≤ n

}
.

In particular, as in Telgarsky’s network, which inspired this construction, we con-
jecture that these points define a function R → R that is realized by a network
Q(P0)−Q(N0) in the exponential complexity regime.
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Figure 9.1 shows the sets P0 and N0 for the case n = 4, as well as the DCPA function
they define. As a prove of concept, note that the number of edges in U(P0 ∪ N0) con-
taining points from both N0 and P0 equals 9, which is also the the number of times
the graph of the network (P0, N0) goes through zero (i.e., the number of pieces in its
decision boundary). Similarly, there are 9 affine pieces, which, as we will see in Propo-
sition 9.2.1, equals |U∗(P0 ⊠N0)|.

P0

N0

x

y

(a) (b)

Figure 9.1: Circle construction for n = 4. Subfigure (a) shows the dual representation.
Subfigure (b) plots the corresponding DCPA function.

The additional one-dimensional ReLU layer x 7→ σ(wx + b), where w, b ∼ N (0, 1),
transforms these points according to Proposition 5.1.7, resulting in an enlarged net-
work with dual representation

N1 = w−P0 ⊠w
+N0 (9.1)

P1 =
(
w+P0 ⊠w

−N0 ⊞ b
)
∪N1. (9.2)

Ultimately, we are interested in comparing the number of affine regions induced by
the networks (P0, N0) and (P1, N1). By Corollary 7.1.8, this comes down to comparing
the number of vertices in the upper convex hulls of P0 ⊠N0 and P1 ⊠N1.

A careful analysis will reveal that the network is expected to transition from the ex-
ponential to the subexponential complexity regime. To reach this conclusion, we first
develop some theoretical tools to better understand upper convex hulls arising from
sums of circles.

9.1 Summing Circles

Start by enumerating the points in N0 as

N0 = {x0, . . . ,xn},
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where

xj :=

(
cos

(
π

2

2j

2n+ 1

)
, sin

(
π

2

2j

2n+ 1

))
∈ R2 (9.3)

for j = 0, . . . , n.

The goal of this section is to prove the following proposition:

Proposition 9.1.1. It holds that

U∗(N0 ⊠N0) = 2N0.

To do so, we need to develop some machinery.

Figure 9.2: Structure underlying the Minkowski sum N0 ⊠N0, which consists of a
copy of N0 (violet) centered at n for every n ∈ N0 (blue). The resulting set N0 ⊠N0 can
be structured using lines through the origin (light blue, see Lemma 9.1.2).

We start with the following lemma (see Figure 9.2 for a visualization):

Lemma 9.1.2. (Line Lemma)

i) For any to pairs 0 ≤ i, j ≤ n and 0 ≤ h, k ≤ n of indices (not necessarily distinct, i.e., it
may be that i = j), the points xi + xj and xh + xk lie on a line through the origin if and
only if i+ j = h+ k.

ii) The line 0 – (xi+xj) corresponding to the index-pair (i, j) encloses the angle π
2

i+j
2n+1

with
the horizontal axis.

iii) On that line, the point furthest away from the origin is given by 2xi if i + j is even and
xi + xi+1 if i+ j is odd.
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Proof. We start with i). The points lie on a line through the origin if and only if

(xi + xj)1
(xh + xk)1

=
(xi + xj)2
(xh + xk)2

.

Inserting the points, this is the case if and only if

cos
(
π
2

2i
2n+1

)
+ cos

(
π
2

2j
2n+1

)
cos
(
π
2

2h
2n+1

)
+ cos

(
π
2

2k
2n+1

) =
sin
(
π
2

2i
2n+1

)
+ sin

(
π
2

2j
2n+1

)
sin
(
π
2

2h
2n+1

)
+ sin

(
π
2

2k
2n+1

) .
By Lemma A.0.2, this equation can be re-written as

cos
(

π
2

2i+2j
2(2n+1)

)
cos
(

π
2

2i−2j
2(2n+1)

)
cos
(

π
2

2h+2k
2(2n+1)

)
cos
(

π
2

2h−2k
2(2n+1)

) =
sin
(

π
2

2i+2j
2(2n+1)

)
cos
(

π
2

2i−2j
2(2n+1)

)
sin
(

π
2

2h+2k
2(2n+1)

)
cos
(

π
2

2h−2k
2(2n+1)

) ,
which is the same as

tan

(
π

2

2i+ 2j

2(2n+ 1)

)
= tan

(
π

2

2h+ 2k

2(2n+ 1)

)
.

Since 0 ≤ i+ j, h+ k ≤ 2n, this, in turn, is equivalent to

i+ j = h+ k.

The first statement follows.

For the second statement, note that the angle Φ enclosed by the horizontal axis and the
line defined by the index-pair (i, j) satisfies

tanΦ =
(xi + xj)2
(xi + xj)1

.

Analogously to the above calculations, one can compute

tanΦ = tan

(
π

2

2i+ 2j

2(2n+ 1)

)
and thus

Φ =
π

2

i+ j

2n+ 1
.

For the third claim, we compute (as above)

∥xi + xj∥22 = 4 cos

(
π

2

i− j
2n+ 1

)
.

If i + j is even, then this term is maximized by i = j. If i + j is odd, then this term is
minimized by |i− j| = 1. This concludes the proof.

The following simple Lemmas will help to prove Proposition 9.1.1
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Lemma 9.1.3. It holds that N0 ⊠N0 ⊆ 2D2 := {x ∈ R2 | ∥x∥2 ≤ 2}. Furthermore, for any
0 ≤ i ≤ n, it is true that 2xi ∈ 2S1 := {x ∈ R2 | ∥x2∥2 = 2}.

Proof. Trivial.

Definition 9.1.4. For any 0 ≤ i ≤ n − 1, we define Ai to be the area enclosed by 2S1

and the line connecting 2xi and 2xi+1 (see Figure 9.3).

xi

xi+1

Ai

Figure 9.3: Example of the area Ai (shaded region).

As it turns out, the interior of Ai contains no points from N0 ⊠N0:

Lemma 9.1.5. For any 0 ≤ i ≤ n,

Ai ∩ (N0 ⊠N0) = {2xi, 2xi+1,xi + xi+1}.

Furthermore, xi + xi+1 lies on the line connecting 2xi and 2xi+1.

Proof. The second claim is clear, as xi + xi+1 is a convex combination of 2xi and 2xi+1,
namely

xi + xi+1 =
1

2
2xi +

1

2
2xi+1. (9.4)

For the first claim, note that, by Lemma 9.1.2.i), the points in N0 ⊠N0 are organized
on lines through the origin.

By Lemma 9.1.2.ii), there is exactly one such line running between the lines defined
by 2xi and 2xi+1, which runs through xi + xi+1. This line lies exactly between the
two neighboring lines. By Lemma 9.1.2.iii), the top point of that line is xi + xi+1. It
hence suffices to show that xi + xi+1 lies on the boundary of Ai, which is clear by
Equation (9.4). This concludes the proof.

We can now finally provide the...
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... proof of Proposition 9.1.1. By Lemma 9.1.2, the points in N0 ⊠N0 are organized in
lines, alternatingly ending in 2xi and xi + xi+1 (see also Figure 9.4).

By Lemma 9.1.5, the point xi + xi+1 is a convex combination of 2xi and 2xi+1, s.t.
U∗(N0 ⊠N0) ⊆ 2N0.

By Lemma 9.1.3, the set 2N0 is contained in 2S1, which implies that no point in 2N0

can be written as a convex combination of the other points. This shows that 2N0 ⊆
U∗(N0 ⊠N0) and concludes the proof.

2S1

0

2

4

6

8

Figure 9.4: Example of N0 ⊠N0 with n = 4. Index-sum are included for every second
line. Upper convex hull is indicated in red.

9.2 Summing Rotated Circles

In the previous section, we computed the upper convex hull of N0 ⊠N0. In this sec-
tion, we study the upper convex hull of N0 ⊠P0.

Start by enumerating the points in P0 as

P0 = {y0, . . . ,yn}

where

yj :=

(
cos

(
π

2

2j + 1

2n+ 1

)
, sin

(
π

2

2j + 1

2n+ 1

))
∈ R2, (9.5)

for j = 0, . . . , n.

The goal of this section is to prove the following proposition:

Proposition 9.2.1. It holds that

U∗(P0 ⊠N0) =
n⋃

i=1

{xi + yi−1,xi + yi} ∪ {x0 + y0} .
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Analogously to Lemma 9.1.2 for N0 ⊠N0, the following lemma structures the points
in P0 ⊠N0.

Lemma 9.2.2 (Line Lemma 2). i) For any two pairs 0 ≤ i, j ≤ n and 0 ≤ h, k ≤ n of
indices (not necessarily distinct, i.e., it may be that i = j), the points xi + yj and xh + yk

lie on a line through the origin if and only if i+ j = h+ k.

ii) The line 0 – (xi + yj) corresponding to the index-pair (i, j) encloses the angle π
2
i+j+1/2
2n+1

with the horizontal axis.

iii) On that line, the point furthest away from the origin is given by xi + yi if i + j is even
and yi−1 + xi if i+ j is odd.

Proof. We proceed analogously to the proof of Lemma 9.1.2, starting with i). The two
points lie on a line through the origin if and only if

(xi + yj)1
(xh + yk)1

=
(xi + yj)2
(xh + xk)2

.

Inserting the points, this is the case if and only if

cos
(
π
2

2i
2n+1

)
+ cos

(
π
2
2j+1
2n+1

)
cos
(
π
2

2h
2n+1

)
+ cos

(
π
2
2k+1
2n+1

) =
sin
(
π
2

2i
2n+1

)
+ sin

(
π
2
2j+1
2n+1

)
sin
(
π
2

2h
2n+1

)
+ sin

(
π
2
2k+1
2n+1

) .
By Lemma A.0.2, this can be re-written as

cos
(

π
2
2i+(2j+1)
2(2n+1)

)
cos
(

π
2
2i−(2j+1)
2(2n+1)

)
cos
(

π
2
2h+(2k+1)
2(2n+1)

)
cos
(

π
2
2h−(2k+1)
2(2n+1)

) =
sin
(

π
2
2i+(2j+1)
2(2n+1)

)
cos
(

π
2
2i−(2j+1)
2(2n+1)

)
sin
(

π
2
2h+(2k+1)
2(2n+1)

)
cos
(

π
2
2h−(2k+1)
2(2n+1)

) ,
which is equivalent to

tan

(
π

2

2h+ 2k + 1

2(2n+ 1)

)
= tan

(
π

2

2i+ 2j + 1

2(2n+ 1)

)
.

Since 0 ≤ i+ j, h+ k ≤ 2n, this, in turn, is equivalent to

h+ k = i+ j.

The first statement follows.

For the second statement, note that the angle Φ enclosed by the horizontal axis and the
line defined by the index-pair (i, j) satisfies

tanΦ =
(xi + yj)2
(xi + yj)1

.

Analogously to the above calculations, one can reformulate the right hand side to read

tanΦ = tan

(
π

2

2i+ 2j + 1

2(2n+ 1)

)
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and thus
Φ =

π

2

i+ j + 1/2

2n+ 1
.

For the third statement, note that

∥xi + yj∥22 = 4 cos

(
π

2

i− j − 1/2

2n+ 1

)
.

If i+ j is even, this term is maximized for i = j. If i+ j is odd, then it is maximized by
i− j = 1.

2S1

0

2

4

68

Figure 9.5: Example for P0 ⊠N0 with n = 4. Index-sum associated with the lines are
indicated for every second line and so is the upper convex hull (red). Compared to the
picture of N0 ⊠N0 (see Figure 9.4), the points are shifted counter-clockwise along the
circular arcs.

The proof of Proposition 9.2.1 requires one more lemma:

Lemma 9.2.3. Let v,w ∈ R2 be two vectors. Then the path v +w obtained by appending w
to v takes a left turn if and only if

v ×w := v1w2 − v2w1 > 0.

Proof. Embed v and w into the first two dimension of R3 like

ṽ :=

(
v
0

)
, w̃ :=

(
w
0

)
.

The cross-product

ṽ × w̃ =

 0
0

v1w2 − v2w1,


equals the signed area of the parallelogram spanned by ṽ and w̃. By our choice of
orientation, this shows that P does indeed take a left turn if and only if v×w > 0.
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Proof of Proposition 9.2.1. “⊆“: We start by arguing that

U∗(P0 ⊠N0) ⊆
n⋃

i=1

{xi + yi−1,xi + yi} ∪ {x0 + y0} .

But this follows from the organization of the points in P0 ⊠N0 in lines through the
origin and the fact that

⋃n
i=1 {xi + yi−1,xi + yi} ∪ {x0 + y0} contains exactly the upper

ends of these lines (see Lemma 9.2.2).

“⊇“: We show the remaining inclusion using an argument similar to the one in An-
drew’s monotone chain algorithm1. In particular, we show that the path

Pi : xi + yi → xi+1 + yi → xi+1 + yi+1

takes a left turn for every i = 0, . . . , n−1. We claim that this would show the remaining
conclusion.

Indeed, since x0 + y0 is the rightmost point in P0 ⊠N0, it has to be
contained in U∗(P0 ⊠N0). It then follows from Andrew’s argument that
{xi + yi,xi+1 + yi,xi+1 + yi+1} ⊆ U∗(P0, N0) for i = 0, and thus for any i by in-
duction.

We now show that Pi indeed takes a left turn. To do so, define the two sections in Pi as

vi := xi+1 + yi − (xi + yi) = xi+1 − xi

wi := xi+1 + yi+1 − (xi + yi) = yi+1 − yi.

By Lemma 9.2.3, the path Pi takes a left turn if and only if vi×wi = vi1wi2−vi2wi1 < 0.

Inserting the points and using Lemma A.0.3, we compute the first summand:

vi1wi2=(xi+1 − xi)1(yi+1 − yi)2

=

[
cos

(
π

2

2(i+ 1)

2n+ 1

)
− cos

(
π

2

2i

2n+ 1

)][
sin

(
π

2

2(i+ 1) + 1

2n+ 1

)
− sin

(
π

2

2i+ 1

2n+ 1

)]
A.0.3
= −4 sin

(
π

2

2(2i+ 1)

2(2n+ 1)

)
sin

(
π

2

2

2(2n+ 1)

)
cos

(
π

2

2(2(i+ 1))

2(2n+ 1)

)
sin

(
π

2

2

2(2n+ 1)

)
from which we conclude that

vi1wi2 = −4 sin
(
π

2

2i+ 1

2n+ 1

)
sin2

(
π

2

1

2n+ 1

)
cos

(
π

2

2(i+ 1)

2n+ 1

)
. (9.6)

For the remaining summand, we proceed analogously:

vi2wi1=(xi+1 − xi)2(yi+1 − yi)1

=

[
sin

(
π

2

2(i+ 1)

2n+ 1

)
− sin

(
π

2

2i

2n+ 1

)][
cos

(
π

2

2(i+ 1) + 1

2n+ 1

)
− cos

(
π

2

2i+ 1

2n+ 1

)]
A.0.3
= −4 cos

(
π

2

2(2i+ 1)

2(2n+ 1)

)
sin

(
π

2

2

2(2n+ 1)

)
sin

(
π

2

2(2(i+ 1))

2(2n+ 1)

)
sin

(
π

2

2

2(2n+ 1)

)
1Andrew’s monotone chain algorithm for computing convex hulls: https://en.wikibooks.

org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain
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from it follows that

vi2wi1 = −4 cos
(
π

2

2i+ 1

2n+ 1

)
sin2

(
π

2

1

2n+ 1)

)
sin

(
π

2

2(i+ 1)

2n+ 1

)
. (9.7)

Putting together Equation (9.6) and Equation (9.7) shows that vi ×wi > 0 if and only
if

−4 sin
(
π

2

2i+ 1

2n+ 1

)
cos

(
π

2

2(i+ 1)

2n+ 1

)
+ 4 cos

(
π

2

2i+ 1

2n+ 1

)
sin

(
π

2

2(i+ 1)

2n+ 1

)
> 0,

which can be reformulated to

tan

(
π

2

2(i+ 1)

2n+ 1

)
> tan

(
π

2

2i+ 1

2n+ 1

)
.

This is true since tan is strictly increasing on (0, π).

9.3 Putting It All Together

In this section, we combine the results from Section 9.1 and Section 9.2 to understand
how the complexity of the network (P0, N0) changes when appending the random
ReLU layer.

Differentiate two cases.

Case 1: w > 0

In this case, by Equations (9.1) and (9.2),

N1 = wN0

P1 = (wP0 ⊞ b) ∪ wN0

and thus
P1 ⊠N1 = (wN0 ⊠wN0) ∪ (wN0 ⊠wP0 ⊞ b). (9.8)

We are interested in the upper convex hull of P1 ⊠N1. On a high level, w scales the
circle on which N0 and P0 are arranged, while b shifts wN0 ⊠wP0 along the vertical
axis. The rest of this subsection makes these considerations more precise. For ease of
notation, we introduce the random-variable

S := |U∗(P1 ⊠N1)| ∈ N+, (9.9)

which, by Theorem 7.0.5, counts the d-cells. By Corollary 7.1.8, it furthermore is an
upper bound for the number of affine regions induced by Q(P1)−Q(N1).

We start with a special case, which is closely related to the previous two sections:

Proposition 9.3.1. It holds that

U∗((N0 ⊠N0) ∪ (P0 ⊠N0)) = U∗(N0 ⊠N0) ∪ U∗(P0 ⊠N0).
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Figure 9.6: Example for (N0 ⊠N0)∪ (P0 ⊠N0) with n = 4 (N0 ⊠N0 is red and P0 ⊠N0

is blue).

Proof. The set (N0 ⊠N0) ∪ (P0 ⊠N0) inherits a line-structure from N0 ⊠N0 and
P0 ⊠N0 (see Lemma 9.1.2 and Lemma 9.2.2). This proposition claims that the up-
per convex hull of their union is the same as the union of the top points from all lines
(see also Figure 9.6).

“⊆“: This is always true.

“⊇“: By Proposition 9.1.1 and Lemma 9.1.2, the set U∗(N0 ⊠N0) consists of points on
lines through the origin enclosing the angle

φi =
π

2

2i

2n+ 1
, i = 0, . . . , n,

with the horizontal axis.

Furthermore, by Proposition 9.2.1 and Lemma 9.2.2, the set U∗(P0 ⊠N0) consists of
points on lines through the origin enclosing the angles

ψi =
π

2

2i− 1/2

2n+ 1
or αi =

π

2

2i+ 1

2n+ 1
, i = 1, . . . , n

along with x0 + y0.

Consequently, the set U∗(N0 ⊠N0) ∪ U∗(P0 ⊠N0) consists of triples
(xi + yi−1, 2xi,xi + yi), i = 1, . . . , n, where one point from U∗(N0 ⊠N0) is enclosed by
two points from U∗(P0 ⊠N0), as well as the points x0 + y0 and 2x0 (the two rightmost
points in Figure 9.6). Using this structure, we will show the remaining inclusion.

Note that 2x0 ∈ U∗((N0 ⊠N0) ∪ (P0 ⊠N0)) since it is the right-most point.

Next, the point x0+y0 is contained in U∗((N0 ⊠N0)∪(P0 ⊠N0)) if and only if the path
P : 2x0 → x0 + y0 → x1 + y0 takes a left turn. To see that this is the case, define

v := x0 + y0 − 2x0 = y0 − x0

w := x1 + y0 − (x0 + y0) = x1 − x0.

88



Then

v1w2 = (y0 − x0)1(x1 − x0)2

=

(
cos

(
π

2

1

2n+ 1

)
− cos(0)

)(
sin

(
π

2

2

2n+ 1

)
− sin(0)

)
=

(
cos

(
π

2

1

2n+ 1

)
− 1

)
sin

(
π

2

2

2n+ 1

)
and, analogously,

v2w1 = (y0 − x0)2(x1 − x0)1

=

(
sin

(
π

2

1

2n+ 1

)
− sin(0)

)(
cos

(
π

2

2

2n+ 1

)
− cos(0)

)
= sin

(
π

2

1

2n+ 1

)(
cos

(
π

2

2

2n+ 1

)
− 1

)
.

Thus, the path makes a left turn if and only if(
cos

(
π

2

1

2n+ 1

)
− 1

)
sin

(
π

2

2

2n+ 1

)
> sin

(
π

2

1

2n+ 1

)(
cos

(
π

2

2

2n+ 1

)
− 1

)
,

which is equivalent to

sin

(
π

2

1

2n+ 1

)
= sin

(
π

2

2

2n+ 1

)
cos

(
π

2

1

2n+ 1

)
− sin

(
π

2

2

2n+ 1

)
cos

(
π

2

1

2n+ 1

)
> sin

(
π

2

2

2n+ 1

)
− sin

(
π

1

1

2n+ 1

)
.

The claim then follows from the fact that

2 sin

(
π

2

1

2n+ 1

)
> sin

(
π

2

2

2n+ 1

)
.

Finally, we are left to show that the triples are contained in the upper convex hull. This
is the case if and only if the paths Pi := wxi + wyi−1 → 2wxi → wxi + wyi make a left
turn (see Figure 9.7).

Define

vi := 2wxi − (wxi + wyi−1) = wxi − wyi−1

wi := wxi + wyi − 2wxi = wyi − wxi.

Then

vi1wi2 = (wxi − wyi−1)1(wyi − wxi)2

= w2

[
cos

(
π

2

2i

2n+ 1

)
− cos

(
π

2

2i− 1

2n+ 1

)][
sin

(
π

2

2i+ 1

2n+ 1

)
− sin

(
π

2

2i

2n+ 1

)]
= −4w2 sin

(
π

2

4i− 1

4n+ 2

)
sin

(
π

2

1

4n+ 2

)
cos

(
π

2

4i+ 1

4n+ 2

)
sin

(
π

2

1

4n+ 2

)
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and

vi2wi1 = (wxi − wyi−1)2(wyi − wxi)1

= w2

[
sin

(
π

2

2i

2n+ 1

)
− sin

(
π

2

2i− 1

2n+ 1

)][
cos

(
π

2

2i+ 1

2n+ 1

)
− cos

(
π

2

2i

2n+ 1

)]
= −4w2 cos

(
π

2

4i− 1

4n+ 2

)
sin

(
π

2

1

4n+ 2

)
sin

(
π

2

4i+ 1

4n+ 2

)
sin

(
π

2

1

4n+ 2

)
,

which implies that

vi ×wi = −4w2 sin2

(
π

2

1

4n+ 2

)(
sin

(
π

2

4i− 1

4n+ 2

)
cos

(
π

2

4i+ 1

4n+ 2

)
−

− cos

(
π

2

4i− 1

4n+ 2

)
sin

(
π

2

4i+ 1

4n+ 2

))
A.0.4
= 4w2 sin2

(
π

2

1

4n+ 2

)
sin

(
π

2

2

4n+ 2

)
and thus vi ×wi > 0. This concludes the proof.

Figure 9.7: Path Pi := wxi + wyi−1 +⊞b → 2wxi → wxi + wyi ⊞ b (counter-clockwise,
green. Here with b = 0). If it makes a left turn, then 2wxi is contained in the upper
convex hull, given w > 0.

The following theorem generalizes Proposition 9.3.1 for arbitrary w > 0, b > 0:

Theorem 9.3.2. Assume w, b > 0. Then

U∗(P1 ⊠N1) = U∗(wN0 ⊠wP0 ⊞ b) ∪ {2wx0} ∪
⋃

1≤i≤n:
u(i)w>b

{2wxi}, (9.10)

where

u(i) :=
2 sin2

(
π
2

1
2(2n+1)

)
sin
(

π
2

4i
2(2n+1)

) . (9.11)
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Proof. Proposition 9.3.1 describes the special case where w = 1 and b = 0. The propo-
sition generalizes to any w > 0 for b = 0:

U∗ ((wN0 ⊠wN0) ∪ (wN0 ⊠wP0)
)
= U∗ ((wN0 ⊠wN0)

)
∪ U∗ ((wN0 ⊠wP0)

)
. (9.12)

In this case, it is clear that u(i)w > b = 0 for all i = 1, . . . , n and hence Equation (9.10)
holds. The interesting part is the influence of b > 0.

So assume b > 0. Then, by Equation (9.8), the set P1 ⊠N1 consists of wN0 ⊠wN0 along
with wN0 ⊠wP0 shifted upwards by b. This means that, upon considering b > 0, the
term U∗ ((wN0 ⊠wP0)⊞ b

)
from Equation (9.12) will always be contained in U∗(P1 +

N1):

U∗(P1 ⊠N1) ⊇ U∗(wN0 ⊠wP0 ⊞ b).

Furthermore

U∗(P1 ⊠N1) ⊇ {2wx0},

since 2wx0 is the left-most point in P1 ∪N1.

It remains to study which part of the upper convex hull ofwN0 ⊠wN0 is also contained
in the upper convex hull of P1 ⊠N1. Similar to the proof of Proposition 9.3.1, we study
the conditions under which the path Pi := wxi + wyi−1 ⊞ b → 2wxi → wxi + wyi ⊞ b
makes a left turn (see Figure 9.7). By an Andrew-type argument, this is the case if and
only if 2wxi ∈ P1 ⊠N1.

Define

vi := 2wxi − (wxi + wyi−1 ⊞ b) = wxi − wyi−1 ⊞−b
wi := wxi + wyi ⊞ b− 2wxi = wyi − wxi ⊞ b.

Then

vi1wi2 = (wxi − wyi−1 ⊞−b)1(wyi − wxi ⊞ b)2

= w2

[
cos

(
π

2

2i

2n+ 1

)
−cos

(
π

2

2i− 1

2n+ 1

)][
sin

(
π

2

2i+ 1

2n+ 1

)
− sin

(
π

2

2i

2n+ 1

)
+
b

w

]
= −2w sin

(
π

2

4i− 1

4n+ 2

)
sin

(
π

2

1

4n+ 2

)[
2w cos

(
π

2

4i+ 1

4n+ 2

)
sin

(
π

2

1

4n+ 2

)
+ b

]
and

vi2wi1 = (wxi − wyi−1 ⊞−b)2(wyi − wxi ⊞ b)1

= w2

[
sin

(
π

2

2i

2n+ 1

)
−sin

(
π

2

2i− 1

2n+ 1

)
− b

w

][
cos

(
π

2

2i+ 1

2n+ 1

)
−cos

(
π

2

2i

2n+ 1

)]
=

[
2w cos

(
π

2

4i− 1

4n+ 2

)
sin

(
π

2

1

4n+ 2

)
−b
][
−2w sin

(
π

2

4i+ 1

4n+ 2

)
sin

(
π

2

1

4n+ 2

)]
,
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which implies that

vi ×wi = −4w2 sin2

(
π

2

1

4n+ 2

)(
sin

(
π

2

4i− 1

4n+ 2

)
cos

(
π

2

4i+ 1

4n+ 2

)
−

− cos

(
π

2

4i− 1

4n+ 2

)
sin

(
π

2

4i+ 1

4n+ 2

))
− 2wb sin

(
π

2

1

4n+ 2

)(
sin

(
π

2

4i− 1

4n+ 2

)
+ sin

(
π

2

4i+ 1

4n+ 2

))
A.0.4
= 4w2 sin2

(
π

2

1

4n+ 2

)
sin

(
π

2

2

4n+ 2

)
−

− 2bw sin

(
π

2

1

4n+ 2

)(
sin

(
π

2

4i− 1

4n+ 2

)
+ sin

(
π

2

4i+ 1

4n+ 2

))
A.0.2
= 4w2 sin2

(
π

2

1

4n+ 2

)
sin

(
π

2

2

4n+ 2

)
−

− 2bw sin

(
π

2

1

4n+ 2

)
2 sin

(
π

2

8i

2(4n+ 2)

)
cos

(
π

2

2

2(4n+ 2)

)
= 4w2 sin2

(
π

2

1

4n+ 2

)
sin

(
π

2

2

4n+ 2

)
−

− 4bw sin

(
π

2

1

4n+ 2

)
cos

(
π

2

1

4n+ 2

)
sin

(
π

2

4i

4n+ 2

)
,

and thus vi ×wi > 0 if and only if

b <
sin2

(
π
2

1
4n+2

)
sin
(
π
2

2
4n+2

)
sin
(
π
2

1
4n+2

)
cos
(
π
2

1
4n+2

)
sin
(
π
2

4i
4n+2

)w
=

2 sin2
(

π
2

1
2(2n+1)

)
sin
(

π
2

4i
2(2n+1)

) w = u(i)w.

The previous theorem tells us how the upper convex hull looks if w > 0, b > 0. The
following following theorem handles the case w > 0, b < 0:

Theorem 9.3.3. Assume w > 0, b < 0. Then

U∗(P1 ⊠N1) = U∗(wN0 ⊠wN0⊞b)∪{w(xn+yn)}∪
⋃

0≤i≤n−1:
l(i)w<b

{w(xi+yi)⊞b, w(xi+yi+1)⊞b},

(9.13)
where

l(i) := −
2 sin2

(
π
2

1
2(2n+1)

)
sin
(

π
2

2(2i+1)
2(2n+1)

) (9.14)
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Proof. The proof of this theorem is very similar to the proof of Theorem 9.3.2, but
instead of upwards, the set wN0 ⊠wP0 is shifted downwards by b. Analogously, one
can see that

U∗(P1 ⊠N1) ⊇ U∗(wN0 ⊠wN0) ∪ {wx0 + wy0}.

It remains to study which points in wN0 ⊠wP0 ⊞ b are also part of the upper convex
hull of P1 ⊠N1.

We start with the observation that, for each i = 1, . . . , n − 1, the line li1 from 2wxi to
2wxi+1 and the line li2 from wxi + wyi to wxi+1 + wyi are parallel (Figure 9.8). Indeed,
this follows from the fact that wxi + wyi − (wxi+1 + wyi) = wxi − wxi+1.

Thus, the points wxi + wyi ⊞ b and wxi+1 + wyi ⊞ b lie in the upper convex hull of
P1 ⊠N1 as long as li2 lies above li1. We employ an Andrew-type argument to derive a
condition under which that is guaranteed.

Let Pi : 2wxi → wxi + wyi ⊞ b→ wxi+1 + wyi ⊞ b and define

vi := wxi + wyi ⊞ b− 2wxi = wyi − wxi ⊞ b

wi := wxi+1 + wyi ⊞ b− (wxi + wyi ⊞ b) = wxi+1 − wxi.

The goal is figuring out when this path makes a left turn.

We compute

vi1wi2 = (wyi − wxi ⊞ b)1(wxi+1 − wxi)2

= w2

[
cos

(
π

2

2i+ 1

2n+ 1

)
− cos

(
π

2

2i

2n+ 1

)][
sin

(
π

2

2(i+ 1)

2n+ 1

)
− sin

(
π

2

2i

2n+ 1

)]
= −4w2 sin

(
π

2

4i+ 1

4n+ 2

)
sin

(
π

2

1

4n+ 2

)
cos

(
π

2

2(2i+ 1)

4n+ 2

)
sin

(
π

2

2

4n+ 2

)

and

vi2wi1 = (wyi − wxi ⊞ b)2(wxi+1 − wxi)1

= w2

[
sin

(
π

2

2i+ 1

2n+ 1

)
−sin

(
π

2

2i

2n+ 1

)
+
b

w

][
cos

(
π

2

2i+ 2

2n+ 1

)
−cos

(
π

2

2i

2n+ 1

)]
=

[
2w cos

(
π

2

4i+ 1

4n+ 2

)
sin

(
π

2

1

4n+ 2

)
+ b

][
−2w sin

(
π

2

4i+ 2

4n+ 2

)
sin

(
π

2

2

4n+ 2

)]
= −4w2 cos

(
π

2

4i+ 1

4n+ 2

)
sin

(
π

2

1

4n+ 2

)
sin

(
π

2

4i+ 2

4n+ 2

)
sin

(
π

2

2

4n+ 2

)
−

− 2wb sin

(
π

2

4i+ 2

4n+ 2

)
sin

(
π

2

2

4n+ 2

)
,
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li2

li1

Figure 9.8: The two parallel lines from 2wxi to 2wxi+1 (li1, red) and wxi+wyi to wxi+1+
wyi (li2, blue).

which implies that

vi ×wi = −4w2 sin

(
π

2

1

4n+ 2

)
sin

(
π

2

2

4n+ 2

)
·

·
[
sin

(
π

2

4i+ 1

4n+ 2

)
cos

(
π

2

4i+ 2

4n+ 2

)
− cos

(
π

2

4i+ 1

4n+ 2

)
sin

(
π

2

4i+ 2

4n+ 2

)]
+

+ 2bw sin

(
π

2

4i+ 2

4n+ 2

)
sin

(
π

2

2

4n+ 2

)
= 4w2 sin2

(
π

2

1

4n+ 2

)
sin

(
π

2

2

4n+ 2

)
+ 2bw sin

(
π

2

4i+ 2

4n+ 2

)
sin

(
π

2

2

4n+ 2

)
,

and thus vi × vi > 0 if and only if

b > −
2 sin2

(
π
2

1
2(2n+1)

)
sin
(

π
2

2(2i+1)
2(2n+1)

) w = l(i)w.

This concludes the proof.

Remark 9.3.4. Theorem 9.3.3 provides an example for a non-empty set of paths
P(P1 ⊠N1). In particular, if b is small enough, there will be two adjacent points
pi + ni = 2xi, pi+1 + ni+1 = 2xi+1 in the upper convex hull of P1 ⊠N1 which clearly
satisfy pi − ni = pi+1 − ni+1. Consequently, the path (pi + ni, pi+1 + ni+1) is contained
in P(P1 ⊠N1). In particular, this shows that |U∗(P1 ⊠N1) is a strict upper bound for
the number of affine regions defined by Q(P1)−Q(N1) (see Corollary 7.1.8).

Theorem 9.3.2 and Theorem 9.3.3 enable us to count the points in the upper convex
hull:

Lemma 9.3.5. For a fixed n, u(·, n) is positive and decreasing while l(·, n) is negative and
increasing.

Theorem 9.3.6. The conditional random variable S
∣∣w > 0, b > 0 (with S defined as in

Equation (9.9)) takes the values

S
∣∣w > 0, b > 0 ∈ {2n+ 2 + i

∣∣ 0 ≤ i ≤ n} (9.15)
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with probability

P(S = 2n+ 2 + i
∣∣w > 0, b > 0) =


1− 2

π
tan-1 (|u(1)|) , i = 0

2
π
(tan-1 (|u(i)|)− tan-1 (|u(i+ 1)|)) , 0 < i < n

2
π
tan-1 (|u(n)|) , i = n.

(9.16)

Proof. By Theorem 9.3.2, U∗(P1 ⊠N1) consists of U∗(wN0 ⊠wP0⊞ b)∪{2wx0}, regard-
less of the exact value of w and b, together with a set depending on w and b. By
Proposition 9.2.1, ∣∣U∗(wN0 ⊠wP0 ⊞ b)

∣∣ = 2n+ 1

(indeed, w just scales the points and b shifts them along the y-axis. In particular, the
total size of this upper convex hull is independent of the values of w > 0 and b > 0).
This shows Equation (9.15).

We now compute the conditional distribution. Let 1 < i < n. It follows from Theo-
rem 9.3.2 and Lemma 9.3.5 that

P(S ≥ 2n+ 2 + i
∣∣w > 0, b > 0) = P(b < u(i)w

∣∣w > 0, b > 0)

=
P(b < u(i)w,w > 0, b > 0)

P (w > 0, b > 0)

= 4P (0 < b < u(i)w)

and thus, with s := 2n+ 2 + i,

P(S = s
∣∣w > 0, b > 0) = P(S ≥ s

∣∣w > 0, b > 0)− P(S ≥ s+ 1
∣∣w > 0, b > 0)

= 4 (P(0 < b < u(i)w)− P(0 < b < u(i+ 1, n)w))

=
4

2π

(
tan-1 (|u(i)|)− tan-1 (|u(i+ 1)|)

)
,

where in the last step we used Lemma A.0.1. Furthermore, for i = n, we compute

P(S = 3n+ 2
∣∣w > 0, b > 0) = P(S ≥ 3n+ 2

∣∣w > 0, b > 0)

= 4P(0 < b < u(n)w)

=
4

2π
tan-1 (|u(n)|)

and

P(S = 2n+ 2
∣∣w > 0, b > 0) = 1− P(S ≥ 2n+ 2 + 1

∣∣w > 0, b > 0)

= 1− 4P(0 < b < u(1))

= 1− 4

2π
tan-1 (|u(1)|) .
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Theorem 9.3.7. The random variable S
∣∣w > 0, b < 0 takes the values

S
∣∣w > 0, b < 0 ∈ {n+ 2 + 2i

∣∣ 0 ≤ i ≤ n} (9.17)

with probability

P(S = n+ 2 + 2i
∣∣w > 0, b < 0) =


1− 2

π
tan-1 (|l(0)|) , i = 0

2
π
(tan-1 (|l(i− 1)|)− tan-1 (|l(i)|)) , 0 < i < n

2
π
tan-1 (|l(n− 1)|) , i = n.

(9.18)

Proof. It follows from Theorem 9.3.3 that U∗(P1 ⊠N1) consists of
U∗(wN0 ⊠wN0) ∪ {wx0 + wy0}, independent of the values of b and w, along with a
set of points depending on w and b. Since∣∣U∗(wN0 ⊠wN0)

∣∣ = n+ 1

by Proposition 9.1.1, Equation (9.17) follows.

We now compute the conditional distribution. Let 0 < i < n. It follows from Theo-
rem 9.3.3 and Lemma 9.3.5 that, for s := n+ 2 + 2i,

P(S = s
∣∣w > 0, b < 0) = P(S ≥ s

∣∣w > 0, b < 0)− P(S ≥ s+ 2
∣∣w > 0, b < 0)

= 4P(0 > b > l(i− 1, n)w)− 4P(0 > b > l(i)w).

Furthermore,

P(S = 3n+ 2
∣∣w > 0, b < 0) = P(S ≥ 3n+ 2

∣∣w > 0, b < 0)

and

P(S = n+ 2
∣∣w > 0, b < 0) = 1− P(S ≥ n+ 2 + 2

∣∣w > 0, b < 0)

= 1− 4P(S ≥ n+ 2 + 2
∣∣w > 0, b < 0).

The claim then follows from Lemma A.0.1.

This concludes our study of the case w < 0. The next subsection deals with w < 0.

Case 2: w < 0

In this case, by Equations (9.1) and (9.2),

N1 = w−P0

P1 =
(
w−N0 ⊞ b

)
∪N1

and thus
P1 ⊠N1 = (w−(P0 ⊠P0)) ∪ (w−(N0 ⊞ b+ P0)). (9.19)

Like before, when studying the case w > 0, we start by establishing the special case
b = 0:
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Proposition 9.3.8. Assume w < 0. Then it holds that

U∗(w−(P0 ⊠P0) ∪ w−(P0 ⊠N0)) = U∗(w−(P0 ⊠P0)) ∪ U∗(w−(P0 ⊠N0)).

Proof. Analogous to the proof of Proposition 9.3.1.

The following theorem generalizes this result to arbitrary b > 0:

Theorem 9.3.9. Assume that w < 0 and b > 0. Then

U∗(P1 ⊠N1) = U∗(w−N0 ⊠w
−P0 ⊞ b) ∪ {2w−y0} ∪

⋃
0≤i≤n−1

−l(n,i)w−>b

{2w−yi}. (9.20)

Proof. Proposition 9.3.8 explains the special case when b = 0. The case b > 0 arises
from the case b = 0 by shifting the points in w−N0 ⊠w−P0 upward along the vertical
axis by b. Similarly to the proof of Theorem 9.3.2, depending on the magnitude of b,
the point 2w−yi will also be contained in the upper convex hull. This is the case if and
only if the path Pi : w

−(xi + yi)⊞ b→ 2w−yi → w−(xi+1 + yi)⊞ b takes a left turn.

Define

vi := 2w−yi − (w−(xi + yi)⊞ b) = w−(yi − xi)⊞−b
wi := w−(xi+1 + yi)⊞ b− 2w−yi = w−(xi+1 − yi)⊞ b.

Then

vi1wi2=(w−yi − w−xi ⊞−b)1(w−xi+1 − w−yi ⊞ b)2

=w−2

[
cos

(
π

2

2i+ 1

2n+ 1

)
−cos

(
π

2

2i

2n+ 1

)][
sin

(
π

2

2i+ 2

2n+ 1

)
−sin

(
π

2

2i+ 1

2n+ 1

)
+

b

w−

]
=−2w− sin

(
π

2

4i+ 1

4n+ 2

)
sin

(
π

2

1

4n+ 2

)[
2w− cos

(
π

2

4i+ 3

4n+ 2

)
sin

(
π

2

1

4n+ 2

)
+b

]

and

vi2wi1=(w−yi − w−xi ⊞−b)2(w−xi+1 − w−yi ⊞ b)1

=w−2

[
sin

(
π

2

2i+ 1

2n+ 1

)
−sin

(
π

2

2i

2n+ 1

)
− b

w−

][
cos

(
π

2

2i+ 2

2n+ 1

)
−cos

(
π

2

2i+ 1

2n+ 1

)]
=

[
2w− cos

(
π

2

4i+ 1

4n+ 2

)
sin

(
π

2

1

4n+ 2

)
−b
][
−2w− sin

(
π

2

4i+ 3

4n+ 2

)
sin

(
π

2

1

4n+ 2

)]
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which implies

vi ×wi = −4w−2
sin2

(
π

2

1

2(2n+ 1)

)(
sin

(
π

2

4i+ 1

2(2n+ 1)

)
cos

(
π

2

4i+ 3

2(2n+ 1)

)
−

− cos

(
π

2

4i+ 1

2(2n+ 1)

)
sin

(
π

2

4i+ 3

2(2n+ 1)

))
− 2w−b sin

(
π

2

1

2(2n+ 1)

)(
sin

(
π

2

4i+ 1

2(2n+ 1)

)
+ sin

(
π

2

4i+ 3

2(2n+ 1)

))
A.0.4
= 4w−2

sin2

(
π

2

1

2(2n+ 1)

)
sin

(
π

2

2

2(2n+ 1)

)
−

− 2bw− sin

(
π

2

1

2(2n+ 1)

)(
sin

(
π

2

4i+ 1

2(2n+ 1)

)
+ sin

(
π

2

4i+ 3

2(2n+ 1)

))
= 4w−2

sin2

(
π

2

1

2(2n+ 1)

)
sin

(
π

2

2

2(2n+ 1)

)
−

− 2bw− sin

(
π

2

1

2(2n+ 1)

)
2 sin

(
π

2

8i+ 4

2(2(2n+ 1))

)
cos

(
π

2

2

2(2(2n+ 1))

)
= 4w−2

sin2

(
π

2

1

2(2n+ 1)

)
sin

(
π

2

2

2(2n+ 1)

)
−

− 4bw− sin

(
π

2

1

2(2n+ 1)

)
cos

(
π

2

1

2(2n+ 1)

)
sin

(
π

2

4i+ 2

2(2n+ 1)

)
,

and thus vi1wi2 − vi2wi1 > 0 if and only if

b <
sin2

(
π
2

1
2(2n+1)

)
sin
(

π
2

2
2(2n+1)

)
sin
(

π
2

1
2(2n+1)

)
cos
(

π
2

1
2(2n+1)

)
sin
(

π
2

4i+2
2(2n+1)

)w−

=
2 sin2

(
π
2

1
2(2n+1)

)
sin
(

π
2

4i+2
2(2n+1)

) w− = −l(i)w−.

Finally, the remaining case b < 0:

Theorem 9.3.10. Assume that w < 0 and b < 0. Then

U∗(P1 ⊠N1) = U∗(w−P0 ⊠w
−P0)∪{w−(x0+y0)⊞b}∪

⋃
1≤i≤n

−u(n,i)w−<b

{w−(xi+yi)⊞b, w
−(xi+yi−1)}.

(9.21)

Proof. Proposition 9.3.8 again explains the edge case when b = 0. The case b < 0 arises
from this edge case by shifting the points in wN0 ⊠wP0 downward along the vertical
axis by b.

We proceed analogously to the proof of Theorem 9.3.3. Depending on the magnitude
of b, the points w−(yi−1+xi)⊞ b and w−(yi+xi)⊞ b are contained in the upper convex
hull.
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Figure 9.9: Example for (P0 ⊠P0)∪ (P0 ⊠N0) with n = 4 (P0 ∪ P0 is red and P0 ∪N0 is
blue).

This is the case if and only if the path P : 2w−yi−1 → w−(xi+yi−1)⊞b→ w−(xi+yi)⊞b
makes a left turn.

Let

vi := w−(xi + yi−1)⊞ b− 2w−yi−1 = w−(xi − yi−1)⊞ b

wi := w−(xi + yi)⊞ b− (w−(xi + yi−1)⊞ b) = w−(yi − yi−1).

Then

vi1wi2 = (w−xi − w−yi−1 ⊞ b)1(wyi − wyi−1)2

= w−2

[
cos

(
π

2

2i

2n+ 1

)
− cos

(
π

2

2i− 1

2n+ 1

)][
sin

(
π

2

2i+ 1

2n+ 1

)
− sin

(
π

2

2i− 1

2n+ 1

)]
= −4w−2

sin

(
π

2

4i− 1

4n+ 2

)
sin

(
π

1

1

4n+ 2

)
cos

(
π

2

4i

4n+ 2

)
sin

(
π

2

2

4n+ 2

)

and

vi2wi1=(w−xi − w−yi−1 ⊞ b)2(wyi − wyi−1)1

=w−2

[
sin

(
π

2

2i

2n+ 1

)
−sin

(
π

2

2i− 1

2n+ 1

)
+

b

w−

][
cos

(
π

2

2i+ 1

2n+ 1

)
−cos

(
π

2

2i− 1

2n+ 1

)]
=

[
2w− cos

(
π

2

4i− 1

4n+ 2

)
sin

(
π

2

1

4n+ 2

)
+b

][
−2w− sin

(
π

2

4i

4n+ 2

)
sin

(
π

2

2

4n+ 2

)]
=−4w−2

cos

(
π

2

4i− 1

4n+ 2

)
sin

(
π

2

1

4n+ 2

)
sin

(
π

2

4i

4n+ 2

)
sin

(
π

2

2

4n+ 2

)
−

− 2w−b sin

(
π

2

4i

4n+ 2

)
sin

(
π

2

2

4n+ 2

)
,
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which implies that

vi ×wi = −4w−2
sin

(
π

2

1

2(2n+ 1)

)
sin

(
π

2

2

2(2n+ 1)

)
·

·
(
sin

(
π

2

4i− 1

4n+ 2

)
cos

(
π

2

4i

4n+ 2

)
− cos

(
π

2

4i− 1

4n+ 2

)
sin

(
π

2

4i

4n+ 2

))
+

+ 2bw− sin

(
π

2

4i

2(2n+ 1)

)
sin

(
π

2

2

2(2n+ 1)

)
= 4w−2

sin2

(
π

2

1

2(2n+ 1)

)
sin

(
π

2

2

2(2n+ 1)

)
+ 2bw− sin

(
π

2

4i

2(2n+ 1)

)
sin

(
π

2

2

2(2n+ 1)

)
and thus vi1wi2 − vi2wi1 > 0 if and only if

b > −
2 sin2

(
π
2

1
2(2n+1)

)
sin
(

π
2

4i
2(2n+1)

) w− = −u(i)w−.

This concludes the proof.

Using Theorem 9.3.9 and Theorem 9.3.10, we can count the points in U∗(P1 ⊠N1),
given w < 0:

Theorem 9.3.11. The random variable S
∣∣w < 0, b > 0 takes the values

S
∣∣w < 0, b > 0 ∈ {2n+ 2 + i

∣∣ 0 ≤ i ≤ n} (9.22)

with probability

P(S = 2n+ 2 + i
∣∣w < 0, b > 0) =


1− 2

π
tan-1 (|l(0)|) , i = 0

2
π
(tan-1 (|l(i− 1)|)− tan-1 (|l(i)|)) , 0 < i < n

2
π
tan-1 (|l(n− 1)|) , i = n.

(9.23)

Proof. Goes analogously to the proof of Theorem 9.3.6 (note that the index is shifted
down by one since adding just one point (i = 1), this corresponds to adding 2w−y0).

Theorem 9.3.12. The random variable S
∣∣w < 0, b < 0 takes the values

S
∣∣w < 0, b < 0 ∈ {n+ 2 + 2i

∣∣ 0 ≤ i ≤ n} (9.24)

with probability

P(S = n+ 2 + 2i
∣∣w < 0, b < 0) =


1− 2

π
tan-1 (|u(1)|) , i = 0

2
π
(tan-1 (|u(i)|)− tan-1 (|u(i+ 1)|)) , 0 < i < n

2
π
tan-1 (|u(n)|) , i = n.

(9.25)
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(a) n = 2 (b) n = 4

(c) n = 8 (d) n = 16

Figure 9.10: Distribution P(S), given in Theorem 9.3.14, for n = 2, 4, 8, 16.

Proof. Analogous to the proof of Theorem 9.3.7.

The following is an interesting fact. We will not use it for the rest of our argument.

Corollary 9.3.13. For all 0 ≤ i ≤ n, it holds that

P(S = 2n+ 2 + i|w > 0, b > 0) = P(S = n+ 2 + 2i|w < 0, b < 0)

and

P(S = n+ 2 + 2i|w > 0, b < 0) = P(S = 2n+ 2 + i|w < 0, b > 0).

Proof. Follows from Theorems 9.3.6, 9.3.7, 9.3.11 and 9.3.12.

Bringing together all four conditional distributions of S allows writing down a closed-
form expression of the unconditional distribution. In order to simplify notation, we
introduce the following short-hand notations:

al := tan-1(|l|), au := tan-1(|u|).

and

∆ali := tan-1 (|l(i)|)− tan-1 (|l(i+ 1)|) , ∆aui := tan-1 (|u(i)|)− tan-1 (|u(i+ 1)|)

Using these definitions, the following theorem provides the distribution of S:
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Theorem 9.3.14. Let n ≥ 2. Then

P(S = n+ 2 + i) =



1
2
− 1

2π
(au(1)− al(0)) , i = 0

1
2π

(
∆al i

2
−1 +∆au i

2

)
, 0 < i < n even

1
2
− 1

2π

(
au(1) + al(0)−∆aln

2
−1 −∆aun

2

)
, i = n even

1
2
− 1

2π
(au(1) + al(0)) , i = n odd

1
2π

(
∆aui−n +∆ali−n−1 +∆au i

2
+∆al i

2
−1

)
, n < i < 2n even

1
2π

(∆aui−n +∆ali−n−1) , n < i < 2n odd
1
2π
(2au(n) + 2al(n− 1), i = 2n

0, o.w.
(9.26)

Proof. For any s ∈ N,

P(S = s) = P(S = s
∣∣w > 0, b > 0)P(w > 0)P(b > 0)+

+ P(S = s
∣∣w > 0, b < 0)P(w > 0)P(b < 0)+

+ P(S = s
∣∣w < 0, b > 0)P(w < 0)P(b > 0)+

+ P(S = s
∣∣w < 0, b < 0)P(w < 0)P(b < 0)

=
1

4

[
P(S = s

∣∣w > 0, b > 0) + P(S = s
∣∣w > 0, b < 0)

+P(S = s
∣∣w < 0, b > 0) + P(S = s

∣∣w < 0, b < 0)
]
.

The theorem then follows from Theorems 9.3.6, 9.3.7, 9.3.11 and 9.3.12 by carefully
studying all cases.

The distribution P(S) is plotted in Figure 9.10. The two main peaks correspond to
s = n+2 and s = 2n+2. In particular, the distribution allows computing the expected
complexity of the upper convex hull, which is a big step towards understanding how
it behaves after one random layer. However, the resulting sum is messy and hard to
comprehend. In the next section we simplify this sum.

9.4 Implications

In this section, we study the implications of the previous section for the complexity
of the upper convex hull. In particular, we show that the probability of the additional
layer increasing the number of d-cells approaches 1/2 from above like 1/2 + O(n−2)
(Proposition 9.4.3). Furthermore, we show that the number of affine regions is ex-
pected to decrease (Corollary 9.4.14).

We start by providing the number of affine regions induced by the network
Q(P0)−Q(N0):

Proposition 9.4.1. The number of affine regions induced by the network Q(P0) − Q(N0) is
2n+ 1. This is also the number of d-cells in T (P0, N0).
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Proof. By Theorem 7.0.5 and Proposition 9.2.1, the number of d-cells in T (P0, N0) is

|U∗(P0 ⊠N0)| = 2n+ 1.

One can quickly confirm that P(P0 ⊠N0) = ∅. The proposition then follows from
Corollary 7.1.8.

by Proposition 9.4.1, the probability P(↑) of increasing the number of d-cells by ap-
pending the random ReLU layer is

P(↑) = P(S > 2n+ 1). (9.27)

The following theorem provides a closed-form expression for this probability.

Theorem 9.4.2. Let n ≥ 2. Then

P(↑) = 1

2
+

2

π

(
tan-1

(∣∣∣l(⌈n
2

⌉
− 1
)∣∣∣)+ tan-1

(∣∣∣u(⌈n
2

⌉)∣∣∣)) . (9.28)

Proof. By Theorems 9.3.6, 9.3.7, 9.3.11 and 9.3.12, the probability is given by

P(↑) = P(w > 0, b > 0) + P(w < 0, b > 0)+

+ P(w > 0, b < 0, S > 2n+ 1) + P(w < 0, b < 0, S > 2n+ 1)

=
1

2
+ P(w > 0, b < 0, S > 2n+ 1) + P(w < 0, b < 0, S > 2n+ 1)

=
1

2
+ P(S > 2n+ 1, w > 0, b < 0) + P(S > 2n+ 1, w < 0, b < 0)

=
1

2
+ P

(
0 > b > l

(⌈n
2

⌉
− 1
)
w
)
+ P

(
0 > b > u

(⌈n
2

⌉)
w
)
,

where in the last step we used an argument analogous to the proof of Theorem 9.3.7
and Theorem 9.3.10. By Lemma A.0.1, this can be re-written as

P(↑) = 1

2
+

2

π

[
tan-1

(∣∣∣l(⌈n
2

⌉
− 1
)∣∣∣)+ tan-1

(∣∣∣u(⌈n
2

⌉)∣∣∣)] .

Define

δ(n) :=
2

π

(
tan-1

(∣∣∣l(⌈n
2

⌉
− 1
)∣∣∣)+ tan-1

(∣∣∣u(⌈n
2

⌉)∣∣∣))
to be the non-trivial contribution to the probability of increase. The following propo-
sition shows that δ(n) vanishes like O(n−2) for large n.

Proposition 9.4.3. It holds that

δ(n) = O(n−2) as n→∞.
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Proof. It is known that
sin(x) = O(x) as x→ 0,

which implies

l
(⌈n

2

⌉
− 1
)
=

2 sin2
(

π
2

1
2(2n+1)

)
sin

(
π
2

2(2⌈n2 ⌉−1+1)

2(2n+1)

) = O(n−2)

and

u
(⌈n

2

⌉)
=

2 sin2
(

π
2

1
2(2n+1)

)
sin

(
π
2

4⌈n2 ⌉
2(2n+1)

) = O(n−2).

The observation that arctan(x) = O(x) as x→ 0 then concludes the proof.

The above argument shows that the probability of increasing the number of d-cells
decreases like O(n−2) towards 1/2. The following considerations further deepen our
understanding of the complexity by computing its expectation.

We start with a number of helpful statements:

Lemma 9.4.4. For any m ∈ N, it is true that

m−1∑
k=1

1

sin
(
kπ
2m

) =
1

2

(
2m−1∑
k=1

1

sin
(
kπ
2m

) − 1

)
.

Proof. By symmetry, sin
(
kπ
2m

)
= sin

(
(2m−k)π

2m

)
for all k ∈ {1, . . . ,m− 1}, so that

2m−1∑
k=1

1

sin
(
kπ
2m

) = 2
m−1∑
k=1

1

sin
(
kπ
2m

) + 1

sin
(
mπ
2m

)
and thus

m−1∑
k=1

1

sin
(
kπ
2m

) =
1

2

(
2m−1∑
k=1

1

sin
(
kπ
2m

) − 1

)
.

We furthermore need the harmonic numbers:

Definition 9.4.5 (Harmonic Number). Given n ∈ N, the harmonic number Hn is defined
as

Hn :=
n∑

k=1

1

k
.

The following is a well-known result, expressing the harmonic numbers integrals:
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Lemma 9.4.6. Given n ∈ N, the harmonic number Hn satisfies

Hn =

1∫
0

1− xn

1− x
dx.

Proof. The integrand can be written as a geometric series,

1− xn

1− x
= 1 + x+ . . .+ xn−1.

Integration yields
1∫

0

1− x2

1− x
dx =

n−1∑
k=0

xk+1

k + 1

∣∣∣1
0
= Hn.

This result allows us to express a sum of inverse sines using the harmonic numbers:

Proposition 9.4.7 (Outlined in [31]). For any m ∈ N and N ≥ 1, it holds that

m−1∑
k=1

csc

(
πk

m

)
=

2m

π
ln

(
2m

π

)
+

2m

π
γ +

N−1∑
k=1

a2k
(2m/π)2k−1

+ CN,m
a2N

(2m/π)2N−1
,

where

a2k := −
B2k2η(2k)

2k

(
2

π

)2k

with the Bernoulli-numbers B2k, the Dirichlet eta function η, and

CN,m :=
−σN,m − θN,m(2η(2N)− 1)

2η(2N)

for two bounded constants 0 < σN,m, θN,m < 1.

Proof. We elaborate on the proof outlined in [31], starting by claiming that

m−1∑
k=1

csc

(
πk

m

)
=

2m

π

1∫
0

sm−1 − 1

(s− 1)(sm + 1)
ds. (9.29)

Indeed, by the well-known2 representation

csc(x) =
1

π

∞∫
0

1

s2 + s
sx/πds

2https://functions.wolfram.com/ElementaryFunctions/Csc/introductions/Csc/05/
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for any 0 < x < π, so that

m−1∑
k=1

csc

(
πk

n

)
=

1

π

∞∫
0

1

s2 + s

m−1∑
k=1

sk/mds

=
1

π

∞∫
0

s−1
s1/m−1

− 1

s2 + s
ds

=
1

π

∞∫
0

s− s1/m

(s2 + s)(s1/m − 1)
ds.

After a change of variables s = x−m with ds = −mx−m−1dx, this integral reads

1

π

∞∫
0

s− s1/m

(s2 + s)(s1/m − 1)
ds =

m

π

∞∫
0

x−m−1 x−m − x−1

(x−2m + x−m)(x−1 − 1)
dx

=
m

π

∞∫
0

1− xm−1

(1 + xm)(1− x)
dx.

Next, a quick substitution x = t−1 confirms that

1∫
0

1− xm−1

(1 + xm)(1− x)
dx =

∞∫
1

1− tm−1

(1 + tm)(1− t)
dt.

Equation (9.29) follows.

For the next step, we use the identity

sm−1 − 1

(s− 1)(sm + 1)
=

sm − 1

(s− 1)(sm + 1)
− sm−1

sm + 1

and Equation (9.29) to write

m−1∑
k=1

csc

(
πk

m

)
=

2m

π

 1∫
0

sm − 1

(s− 1)(sm + 1)
ds−

1∫
0

sm−1

sm + 1
ds


=

2m

π

 1∫
0

sm − 1

(s− 1)(sm + 1)
ds− ln 2

m

 .

Then

sm − 1

s− 1
− sm − 1

s− 1

sm

sm + 1
=

sm − 1

(s− 1)(sm + 1)
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implies

m−1∑
k=1

csc

(
πk

m

)
=

2m

π

 1∫
0

sm − 1

s− 1
ds−

1∫
0

sm − 1

s− 1

sm

sm + 1
ds− ln 2

m

 (9.30)

=
2m

π

Hm −
1∫

0

sm − 1

s− 1

sm

sm + 1
ds− ln 2

m

 (9.31)

where Hm is the m-th harmonic number (see Lemma 9.4.6).

It remains to compute the integral

I(m) :=

1∫
0

sm − 1

s− 1

sm

sm + 1
ds.

To do so, we apply a change of variable s = e−t/m. Then ds = − 1
m
e−t/mdt and, after

re-arranging terms, the integral can be re-written as

I(m) =

∞∫
0

1− e−t

t

1

1 + et
t/m

et/m − 1
dt. (9.32)

It readily follows from [32, Theorem 3] that, for any x > 0 and N ≥ 1, there exists a
θN,m ∈ (0, 1), which might depend on m and N , such that

x

ex − 1
= 1− x

2
+

N−1∑
k=1

B2k

(2k)!
x2k + θN,m

B2N

(2N)!
x2N

Applying this observation to Equation (9.32) implies that

I(m) =

∞∫
0

1− e−t

t

1

1 + et

(
1− t/m

2
+

N−1∑
k=1

B2k

(2k)!
(t/m)2k + θN,m

B2N

(2N)!
(t/m)2N

)
dt

= ln
(π
2

)
− 2 ln 2− 1

2m
+

N−1∑
k=1

B2k

(2k)!

1

m2k
I2(k) + θN,m

B2N

(2N)!

1

m2N
I2(N)

where

I2(k) =

∞∫
0

1− e−t

1 + et
t2k−1dt.

Using identity [33, 3.411.8], this integral can be evaluated as

I2(k) = Γ(2k)

(
∞∑
i=1

(−1)2k

i2k
−

∞∑
i=1

(−1)2k

(1 + i)2k

)

= Γ(2k)

(
2

∞∑
i=1

(−1)2k

i2k
− 1

)
= Γ(2k) (2η(2k)− 1) ,
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where η(s) = (1 − 21−s)ζ(s) is the Dirichlet eta function (with ζ the Riemann zeta
function). We can thus write

I(m) = ln
(π
2

)
− 2 ln 2− 1

2m
+

N−1∑
k=1

B2k

2k

1

m2k
(2η(2k)− 1) + θN,m

B2N

2N

1

m2N
(2η(2N)− 1) .

(9.33)

Now, by [34, Equation 9.11], there exists a σN,m ∈ (0, 1), depending on m and N , such
that

Hn = lnm+ γ +
1

2m
−

N−1∑
k=1

B2k

2k

1

m2k
− σN,m

B2N

2N

1

m2N
, (9.34)

where γ is the Euler-Mascheroni constant (γ ≈ 0.577) .

Equation (9.33) and Equation (9.34) imply that

Hn − I(m) = ln

(
2m

π

)
+ γ +

ln 2

m
+

N−1∑
k=1

a2k
(2m/π)2k

+ CN,m
a2N

(2m/π)2N
(9.35)

with coefficients

a2k := −
B2k2η(2k)

2k

(
2

π

)2k

and constant
CN,m =

−σN,m − θN,m(2η(2N)− 1)

2η(2N)
.

The latter is derived from the equation

−σN,m
B2N

2N

1

m2N
− θN,m

B2N

2N

1

m2N
(2η(2N)− 1) = CN,m

B2N

2N

1

m2N
2η(2N)

Inserting Equation (9.35) into Equation (9.31) concludes the proof.

And in the special case where N = 1:

Corollary 9.4.8. For any m ∈ N, it holds that

m−1∑
k=1

csc

(
πk

m

)
=

2m

π
ln

(
2m

π

)
+

2m

π
γ + C1

a2
2m

π. (9.36)

This concludes our studies of sums of inverse sin’s for now.

The following corollary is another useful building block on our mission to understand
the expected complexity gain:

Corollary 9.4.9. For any m ∈ N, it is true that

m∑
i=1

tan-1 |u(i)|+
m−1∑
i=0

tan-1 |l(i)| ∼ π

4(2m+ 1)
ln

(
π

4(2m+ 1)

)
+

π

4(2m+ 1)
γ +O(m−2).

(9.37)
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Proof. It follows from the well known facts tan-1 x ∼ x and sinx ∼ x as x→ 0, that the
sum

Zm :=
m∑
i=1

tan-1 |u(i)|+
m−1∑
i=0

tan-1 |l(i)|

behaves for m→∞ like

Zm =
m∑
i=1

tan-1

2 sin2
(

π
2

1
2(2m+1)

)
sin
(
π
2

2i
2m+1

)
+

m−1∑
i=0

tan-1

2 sin2
(

π
2

1
2(2m+1)

)
sin
(
π
2

2i+1
2m+1

)


=
2m∑
i=1

tan-1

2 sin2
(

π
2

1
2(2m+1)

)
sin
(
π
2

i
2m+1

)


∼ 2

(
π

2

1

2(2m+ 1)

)2 2m∑
i=1

1

sin
(
π
2

i
2m+1

)
9.4.4
=

(
π

2

1

2(2m+ 1)

)2
(

4m+1∑
i=1

1

sin
(
π i

4m+2

) − 1

)
.

Using Corollary 9.4.8, the sum can be approximated as

4m+1∑
i=1

1

sin
(

πi
4m+2

) =
2(4m+ 2)

π
ln

(
2(4m+ 2)

π

)
+

2(4m+ 2)

π
γ +O

(
m−1

)
and thus

Zm ∼
π

4(2m+ 1)
ln

(
4(2m+ 1)

π

)
+

π

4(2m+ 1)
γ +O(m−2).

Remark 9.4.10. Note that one could drop the O(m−2) in Equation (9.37) since

π

4(2m+ 1)
ln

(
π

4(2m+ 1)

)
+

π

4(2m+ 1)
γ+O(m−2) ∼ π

4(2m+ 1)
ln

(
π

4(2m+ 1)

)
+

π

4(2m+ 1)
γ.

However, we keep the non-leading terms for higher resolution (even though we
dropped resolution when approximating sinx ∼ x and tan−1 x ∼ x in the proof of
Corollary 9.4.9).

Having developed the above machinery for sums of cotangents, we now turn our
attention to computing the expected number E[S] of points in the upper convex hull
of P1 ⊠N1.

The following lemma provides a closed-form expression for the conditional expecta-
tions:
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Proposition 9.4.11. The following identities hold for the conditional expectations of S:

E[S
∣∣w > 0, b > 0] = 2n+ 2 +

2

π

n∑
i=1

tan-1 |u(i)| (9.38)

E[S
∣∣w > 0, b < 0] = n+ 2 +

4

π

n−1∑
i=0

tan-1 |l(i)| (9.39)

E[S
∣∣w < 0, b > 0] = 2n+ 2 +

2

π

n−1∑
i=0

tan-1 |l(i)| (9.40)

E[S
∣∣w < 0, b < 0] = n+ 2 +

4

π

n∑
i=1

tan-1 |u(i)|. (9.41)

Proof. We start with Equation (9.38). Writing S ′ := S − (2n + 2), it follows from Theo-
rem 9.3.6 that

E[S ′ ∣∣w > 0, b > 0] =
2

π

(
n−1∑
i=1

i
(
tan-1 |u(i)| − tan-1 |u(i+ 1)|

)
+ n tan-1 |u(n)|

)

=
2

π

(
n∑

i=1

i tan-1 |u(i)| −
n−1∑
i=1

i tan-1 |u(i+ 1)|

)

=
2

π

(
n∑

i=1

i tan-1 |u(i)| −
n∑

i=2

(i− 1) tan-1 |u(i)|

)

=
2

π

(
n∑

i=2

tan-1 |u(i)|+ tan-1 |u(1)|

)

=
2

π

n∑
i=1

tan-1 |u(i)|.

This shows Equation (9.38). Analogously, one can prove Equation (9.40), this time
using Theorem 9.3.11:

E[S ′ ∣∣w < 0, b > 0] =
2

π

(
n−1∑
i=1

i
(
tan-1 |l(i− 1)| − tan-1 |l(i)|

)
+ n tan-1 |l(n− 1)|

)

=
2

π

(
n∑

i=1

i tan-1 |l(i− 1)| −
n−1∑
i=1

i tan-1 |l(i)|

)

=
2

π

(
n−1∑
i=0

(i+ 1) tan-1 |l(i)| −
n−1∑
i=1

i tan-1 |l(i)|

)

=
2

π

(
n−1∑
i=1

tan-1 |l(i)|+ tan-1 |l(0)|

)

=
2

π

n−1∑
i=0

tan-1 |l(i)|.
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Equations (9.39) and (9.41) follow analogously to Equation (9.38) and (9.40) from The-
orems 9.3.7 and 9.3.12.

Finally, the law of total expectation allows stitching together the conditional expecta-
tions to obtain the unconditional expectation of S:

Theorem 9.4.12. The expected number of points in the upper convex hull of P1 ⊠N1 is given
by

E[S] ∼ 3

2
n+ 2 +

3

8(2n+ 1)
ln

(
4(2n+ 1)

π

)
+

3

8(2n+ 1)
γ +O(n−2). (9.42)

Proof. Following the law of total expectation, E[S] splits into a sum of conditional ex-
pectations,

E[S] =
1

4
(ζ1 + ζ2),

where

ζ1 := E[S
∣∣w > 0, b > 0] + E[S

∣∣w < 0, b > 0]

ζ2 := E[S
∣∣w > 0, b < 0] + E[S

∣∣w < 0, b < 0].

As a next step, we study ζ1 and ζ2 more closely. By Proposition 9.4.11, we can refor-
mulate

ζ1 = 4n+ 4 +
2

π

(
n∑

i=1

tan-1 |u(i)|+
n−1∑
i=0

tan-1 |l(i)|

)
.

Similarly, it holds that

ζ2 = 2n+ 4 +
4

π

(
n∑

i=1

tan-1 |u(i)|+
n−1∑
i=0

tan-1 |l(i)|

)
,

so that

ζ1 + ζ2 = 6n+ 8 +
6

π

(
n∑

i=1

tan-1 |u(i)|+
n−1∑
i=0

tan-1 |l(i− 1)|

)
.

By Corollary 9.4.9, this implies that

ζ1 + ζ2 ∼ 6n+ 8 +
6

π

(
π

4(2n+ 1)
ln

(
4(2n+ 1)

π

)
+

π

4(2n+ 1)
γ +O(n−2)

)
.

This concludes the proof.

A natural question arising from Theorem 9.4.12 is the following: how does the ex-
pected marginal complexity

C↑ := E[S]− (2n+ 1),

which captures the gain in d-cells through the additional layer, behave for large n? The
answer is now a simple corollary:
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Figure 9.11: The expected marginal complexity C↑ as a function of n. Blue line is the
empirical mean, averaged over 1000 random initializations. Dashed line corresponds
to the leading terms approximation given in Corollary 9.4.13. Green dotted line corre-
sponds to the exact sum derived from Theorem 9.3.14.

Corollary 9.4.13. The expected marginal complexity behaves like

C↑ ∼ −1

2
n+ 1 +

3

8(2n+ 1)
ln

(
4(2n+ 1)

π

)
+

3

8(2n+ 1)
γ +O(n−2) (9.43)

In words, we can expect the number of d-cells to decrease linearly in n. This result
is confirmed in Figure 9.11, which plots the empirical mean, the exact mean using
Theorem 9.3.14 as well as the approximation in Corollary 9.4.13.

Corollary 9.4.13 says that the number of d-cells is expected to decrease under the ad-
ditional ReLU layer. However, by Corollary 7.1.8, the d-cells can be finer than affine
regions. The following corollary establishes a similar result for the number of affine
regions:

Corollary 9.4.14. The number of affine regions is expected to decrease under the additional
random ReLU layer.

Proof. By Corollary 7.1.8, S = |U∗(P1 ⊠N1)| is an upper bound for the number of
affine regions defined by Q(P1)−Q(N1) (see also Remark 9.3.4). By Proposition 9.4.1,
the number of affine regions, like the number of d-cells, defined by Q(P0) − Q(N0) is
also given by 2n+ 1.

What is the take-away from this result? In the beginning of this chapter, we conjec-
tured, inspired by the dual representation of Telgarsky’s network derived in Chapter 8,
that the network (P0, N0)

3 lives in the exponential complexity regime.

In particular, since U(P0 ⊠N0) = O(n) by Proposition 9.2.1, this means that P0 ⊠N0

can be written using log n narrow ReLU layers.

3or a close approximation thereof, as it remains to show that N0 and P0 can be placed on the sphere
by piecewise linear activation functions
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Corollary 9.4.14 says that adding one random ReLU layer after these log n determinis-
tic layers is expected to decrease the number of affine regions. This confirms our claim
that the exponential complexity regime is unstable/sharp. The random weights tran-
sition the network to the second regime.
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Chapter 10

Heuristic Arguments in Dual Space

In this chapter, we study the volume hypothesis using two additional toy examples.
Compared to the problem of summing circles discussed in the previous chapter, the
problems here focus solely on understanding the complexity of the upper convex hull.
To do so, these problems are abstract and take place solely in dual space. In partic-
ular, the randomness over dual points does not arise from weights and biases but is
instead assumed to follow a known distribution; uniform in Section 10.1 and Gaussian
in Section 10.2.

In Section 10.1, we show that the probability of increasing the size of an upper convex
hull of size n by adding one point uniformly at random diminishes for large n. In
Section 10.2, we establish a similar result for two sets of i.i.d. Gaussian red and blue
random points and edges between them.

10.1 Large Upper Convex Hulls

In this section, we show (in a specific setup) that the upper convex hull, upon adding
a new point at random, grows more slowly if it is already largely occupied.

This is a simplification, since the real dynamics of a neural network are such that the
whole representation changes from layer to layer. Nevertheless, this approach offers
an interesting perspective on the dual representation and provides another heuristic
to think about the volume hypothesis: large convex hulls, corresponding to complex
networks, do not have a lot of space left to grow.

In our specific case, we define

Q := {(x, y) ∈ R2
∣∣ 0 ≤ x, y ≤ 1},

to be the two-dimensional unit cube with lower left corner at the origin and Xn ⊆ S
to be a set of n + 1 equidistant points on the part of the sphere contained in the first
quadrant,

Xn =

{(
cos

(
π

2

i

n

)
, sin

(
π

2

i

n

)) ∣∣ i ∈ N0, 0 ≤ i ≤ n

}
.
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Q

S

(1, 0)

(0, 1)

Figure 10.1: Example drawing for n = 4. The blue shaded areas are the ωn
i , adding the

red areas gives the ∆n
i .

Note that U∗(Xn) = Xn, i.e., thatXn already contains all the vertices of its upper convex
hull. We are interested in the following question:

Upon sampling a point y ∼ U(Q) uniformly at random from the cube, what
is the probability that y will increase the size of the upper convex hull? That
is, what is the probability that |U∗(Xn ∪ {y})| > |U∗(Xn)|?

To answer this question, note that the size of the upper convex hull can only grow if y
falls into the set Ω defined as

Ω := ∪n−1
i=0 ω

n
i

where
ωn
i = ∆n

i ∩ {x ∈ R2
∣∣ ∥x∥22 > 1}

with ∆n
i the simplex on points

(
cos
(
π
2

i
n

)
, sin

(
π
2

i
n

))
,
(
cos
(
π
2
i+1
n

)
, sin

(
π
2
i+1
n

))
and(

cos
(
π
2

i
n

)
, sin

(
π
2
i+1
n

))
(see Figure 10.1).

Since y is picked uniformly at random from Q, it follows that the probability of y
increasing the size of the upper convex hull is given by

P(|U∗(Xn ∪ {y})| > |U∗(Xn)|) =
V (Ω)

V (Q)
= V (Ω), (10.1)

where V (Ω) and V (Q) are the volume of Ω and Q, respectively.

In the following, we will compute an upper bound for this probability, using the fact
that

Ω ⊆ ∪n−1
i=1 ∆

n
i =: ∆n. (10.2)

Proposition 10.1.1. The volume of ∆n is given by

V (∆n) =
1− cos

(
π
2n

)
2 sin

(
π
2n

) .
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Proof. The volume of the i’th triangle is given by

V (∆n
i ) =

1

2

(
cos

(
π

2

i

n

)
− cos

(
π

2

i+ 1

n

))
·
(
sin

(
π

2

i+ 1

n

)
− sin

(
π

2

i

n

))
=

1

2

(
cos

(
π

2

i

n

)
sin

(
π

2

i+ 1

n

)
− cos

(
π

2

i

n

)
sin

(
π

2

i

n

))
− cos

(
π

2

i+ 1

n

)
sin

(
π

2

i+ 1

n

)
+ cos

(
π

2

i+ 1

n

)
sin

(
π

2

i

n

)
A.0.5
=

1

4

[
sin

(
π

2

2i+ 1

n

)
+ sin

(
π

2

1

n

)
− sin

(
π

2

2i

n

)
− sin (0)−

− sin

(
π

2

2(i+ 1)

n

)
− sin (0) + sin

(
π

2

2i+ 1

n

)
− sin

(
π

2

1

n

)]
=

1

4

[
2 sin

(
π

2

2i+ 1

n

)
− sin

(
π

2

2i

n

)
− sin

(
π

2

2(i+ 1)

n

)]
=

1

4

[
2 sin

(
π

2

2i+ 1

n

)
− sin

(
π
i

n

)
− sin

(
π
i+ 1

n

)]
.

Consequently, the total area of all triangles is

V (∆n) =
n−1∑
i=0

V (∆n
i ) =

1

4

[
2

n−1∑
i=0

sin

(
π

2

2i+ 1

n

)
−

n−1∑
i=0

sin

(
π
i

n

)
−

n−1∑
i=0

sin

(
π
i+ 1

n

)]
.

We compute each sum separately using Lemma A.0.6:

n−1∑
i=0

sin

(
π

2

2i+ 1

n

)
=

n−1∑
i=0

sin
( π
2n

+
π

n
i
)

=
sin
(
n · π

2n

)
sin
(

π
2n

) sin
( π
2n

+ (n− 1)
π

2n

)
=

1

sin
(

π
2n

) .
Next,

n−1∑
i=0

sin

(
π
i

n

)
=

n−1∑
i=0

sin
(π
n
i
)

=
sin
(
n · π

2n

)
sin
(

π
2n

) sin
(
(n− 1)

π

2n

)
=

sin
(
π
2
− π

2n

)
sin
(

π
2n

)
=

cos
(

π
2n

)
sin
(

π
2n

)
= cot

( π
2n

)
.
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Finally,
n−1∑
i=0

sin

(
π
i+ 1

n

)
=

n−1∑
i=0

sin
(π
n
+
π

n
i
)

=
sin
(
n · π

2n

)
sin
(

π
2n

) sin
(π
n
+ (n− 1)

π

2n

)
=

sin
(
π
2
+ π

2n

)
sin
(

π
2n

)
=

cos
(

π
2n

)
sin
(

π
2n

)
= cot

( π
2n

)
.

We conclude that

V (∆n) =
1

4

(
2

1

sin
(

π
2n

) − 2 cot
( π
2n

))
.

The claim then follows from a simple reformulation.

The following theorem uses this formula for the volume V (∆n) to upper bound the
probability of enlarging the upper convex hull, and shows that it vanishes for large n.

Theorem 10.1.2. The probability of y increasing the size of the upper convex hull is upper
bounded by

P(|U∗(Xn ∪ {y})| > |U∗(Xn)|) ≤
1− cos

(
π
2n

)
sin
(

π
2n

) .

Furthermore, this probability tends to zero for large n:

lim
n→∞

P(|U∗(Xn ∪ {y})| > |U∗(Xn)|) = 0.

Proof. By construction and Proposition 10.1.1,

P(|U∗(Xn ∪ {y})| > |U∗(Xn)|) ≤ V (∆n) =
1− cos

(
π
2n

)
sin
(

π
2n

) .

This shows the first claim.

For the second claim, apply L’Hospital’s rule to conclude that

lim
n→∞

V (∆n) = lim
n→∞

1− cos
(

π
2n

)
sin
(

π
2n

)
= lim

n→∞

π
2n2 sin

(
π
2n

)
− π

2n2 cos
(

π
2n

)
= − lim

n→∞

sin
(

π
2n

)
cos
(

π
2n

)
= 0.
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(a) Cloud of red and blue points (b) Upper convex hull

Figure 10.2: An example of red and blue points in R2 with α = 7 and β = 7. Their
upper convex hull can be thought of as a chain of red and blue nobs.

This theorem shows that the probability of enlarging the upper convex hull vanishes
as more points are already in the upper convex hull. As described in the introduc-
tion to this section, this result provides another heuristic to think about the volume
hypothesis. In the setting of neural networks, it reads that there are less ways to grow
the complexity of already complex networks than that of simple ones.

10.2 Gaussian Dual Points

In this section, we provide further abstract considerations to better understand large
upper convex hulls, this time in relation to decision boundary complexity in the sense
of Proposition 6.2.2. In particular, given two setsR,B ⊆ R2, we are interested in edges
inside U(R∪ B), which contain points from bothR and B.

We start with some basic definitions. LetR,B ⊆ R2 be two non-empty sets containing
i.i.d. multivariate uncorrelated Gaussian random variables, with size |R| = α, |B| = β
and n := α+ β. The random variables belonging toR are called red points, while those
belonging to B are called blue points.

The set containing all points is called X := R ∪ B. Enumerate its entries X =

{P1, . . . , Pn}, where each Pi
iid∼ N (0, 1).

We call an edge in C(X ) good if it contains both a red and a blue point. In accordance
with Proposition 6.2.2, we are interested in counting the good edges in U(X ).

To do so, one first needs to understand the probability that an edge (Pi, Pj) is contained
in just the convex hull of X . Define the corresponding event

Eij := edge (Pi, Pj) is contained in C(X ).

The following proposition provides the probability for this event.

Proposition 10.2.1 (Boundary Edges [35, Satz 4]). The probability that an edge (Pi, Pj) is

118



in contained in the convex hull C(X ) is given by

P(Eij = 1) =
2√
π

∞∫
0

(
Φ(p)n−2 + (1− Φ(p))n−2) e−p2dp (10.3)

where

Φ(p) =
1√
2π

p∫
−∞

e−
u2

2 du.

For large n, this probability satisfies

P(Eij = 1) ∼ 4
√
2π log n

n2
.

Proof. We start by showing the non-asymptotic identity. Since the points in X are i.i.d.,
it suffices to compute P(E12 = 1).

Let L be the line going through P1 and P2 and write S1 and S2 for the two closed half-
spaces induced by L. Then Eij = 1 if and only all the other points lie either in S1 or S2.
Defining

A := {Pk ∈ S1∀k ≥ 3 or Pk ∈ S2∀k ≥ 3}

allows writing

P(E12 = 1) = P(A) (10.4)

=

∫
P(A

∣∣P1 = p1, P2 = p2)pP2(p2)pP1(p1)dp1dp2, (10.5)

where pP1 and pP2 are the densities of P1 and P2 (both Gaussian by assumption).

l

x

φ

p

t

Figure 10.3: Explanation of line coordinates for a line l (inspired by [36, Figure 4.1]).
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Since the Pi are assumed to be i.i.d.,

P(A) = P(Pk ∈ S1∀k ≥ 3) + P(Pk ∈ S2∀k ≥ 3)

= P(P3 ∈ S1)
n−2 + P(P3 ̸∈ S1)

n−2

= P(P3 ∈ S1)
n−2 + (1− P (P3 ∈ S1))

n−2 .

Assume now that P1 = p1 ∈ R2, P2 = p2 ∈ R2 are realized, and write l for the line
connecting p1 and p2. Similarly, write s1, s2 for half-spaces induced by l. Analogously
to the last computation, one can show that

P(A
∣∣P1 = p1, P2 = p2) = P(P3 ∈ s1)n−2 + (1− P(P3 ∈ s1))n−2 . (10.6)

In order to study the integral resulting from inserting Equation (10.6) into the integral
in Equation (10.5), we introduce line coordinates [36] to express points on l. In these
coordinates, any point x ∈ l on the line can be written as

x = p

(
cosφ
sinφ

)
+ t

(
− sinφ
cosφ,

)
where p is the the shortest distance from l to the origin, t is the distance from x to the
intersection of l with the line determined by the shortest distance to the origin, and φ
is the angle between the positive first axis and r (see Figure 10.3). A simple calculation
shows that

∥x∥2 = p2 + t2. (10.7)

Furthermore, by [36, Equation (4.2)], the volume form translates like

dp1dp2 = dpdφdt1dt2|t1 − t2|, (10.8)

where (p, φti) are the line-coordinates for pi on l for both 1 = 1, 2.

We come back to computing P(P3 ∈ s1), now using line coordinates. Without loss
of generality, assume that the half-space s1 realized by l does not contain the origin.
Then, by the isotropy of the Gaussian distribution, we may rotate the line l around the
origin until it is parallel to the first axis. In this case,

P(P3 ∈ s1) = P((P3)2 ≥ p) (10.9)

=
1

2π

∫
R

+∞∫
p

e−
x2+y2

2 dxdy (10.10)

=
1√
2π

+∞∫
p

e−
y2

2 dy (10.11)

= 1− Φ(P ). (10.12)

Finally, using Equation (10.7), we deduce that

1

2π
e−

∥pi∥
2

2 =
1

2π
e−

p2+t2i
2 (10.13)
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for both i = 1, 2.

Inserting Equations (10.6), (10.8), (10.12) and (10.13) into Equation (10.5) gives

P(Eij) =
1

(2π)2

2π∫
0

dφ

∫∫∫ (
Φ(p)n−2 + (1− Φ(p))n−2) |t1 − t1|e−p2− t21+t22

2 dt1dt2dp

=
1

2π

∫∫∫ (
Φ(p)n−2 + (1− Φ(p))n−2) |t1 − t1|e−p2− t21+t22

2 dt1dt2dp.

Next we claim that ∫∫
|t1 − t2|e−

t21+t22
2 dt1dt2 = 4

√
π, (10.14)

which would show Equation (10.3) and conclude the proof of the first claim of the
Proposition. Indeed, define the transformation

(u, v) =

(
t1 − t2√

2
,
t1 + t2√

2

)
.

Simple calculations reveal that

(t1, t2) =

(
u+ v√

2
,
v − u√

2

)
t21 + t22 = u2 + v2

dt1dt2 = dudv

t1 − t2 =
√
2u

and therefore ∫∫
|t1 − t2|e−

t21+t22
2 dt1dt2 =

√
2

∫
du|u|e−

u2

s

∫
dve−

v2

2

=
√
2
√
2π2

= 4
√
π.

This shows the first claim.

For the asymptotic behavior, see the second part of the proof of [35, Satz 4].

With the probability that any specific edge is in the boundary of the convex hull at
hand, the more specific case concerning the upper convex hull follows readily. Define
the corresponding event

Uij := edge (Pi, Pj) is contained in U(X ).

Then the total number of good edges is given by

U :=
∑
Pi∈R,
Pj∈B

Uij.
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The symmetry of the problem implies that the probability of any specific edge being
in the upper convex hull is

P(U12 = 1) = P(Uij = 1) =
1

2
P(Eij = 1).

Putting these results together, the following theorem provides the expected number of
good edges:

Theorem 10.2.2. The expected number of edges in X = R ∪ B containing points from both
R and B satisfies

E[U ] ∼ α(n− α)
2

4
√
2π log n

n2
, n→∞. (10.15)

Proof. Clearly

E[U ] =
∑
Pi∈R,
Pj∈B

E[Uij] =
1

2

∑
Pi∈R,
Pj∈B

P(Eij = 1).

The claim then follows from Proposition 10.2.1.

For the rest of section, we discuss the implication of Theorem 10.2.2.

Given a fixed number of points, the expected number of good edges is maximized for
α = n/2, in which case

E[U ] ∼
√
2π log n

2
.

In particular, the marginal gain diminishes for large n like

d

dn

√
log n =

1

2n log n
.

While this result is not as strong as the one in Corollary 9.4.13 (which derives negative
marginal complexity, although in a completely different setting), this shows that the
marginal gain obtained by including one more point goes to zero.

This concludes our discussion of the first extreme case. In the second extreme case,
Equation (10.15) is minimal for α = 1 or α = n− 1, and

E[U ] ∼ 2
√
2π log n

n
.

In particular, the marginal gain obtained by adding one point is negative in this case.

Interpolating between these two cases shows that, for any ratio of red and blue points,
the marginal gain in the expected number of good edges transitions from positive but
diminishing to negative.
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Chapter 11

Conclusion

The first part of this thesis summarizes and elaborates on existing work on the dual
representation of fully connected feedforward ReLU networks. It provides two equiv-
alent perspectives to think about this representation, one based on tropical affine and
the other on tropical geometry.

Using the dual representation, we fill gaps in existing arguments to rigorously derive
duality results which translate complexity measures to dual space. In particular, the
number of affine regions defined by a network N = Q(P ) − Q(N) : Rd → R corre-
sponds to the number of vertices in the upper convex hull of P ⊠N , and the number
of boundary pieces of a binary classification network equals the number of edges in
U(P ∪N) containing points from both P and N .

In the second part of this work, we use the previously derived duality results to pro-
vide evidence for the volume hypothesis. This hypothesis was formulated by Chiang
et al. [6] to explain why overparameterized models trained using a Guess & Check
algorithm generalize well, despite not being implicitly regularized by first order op-
timization techniques. Chiang et al. attribute this observation solely to the topology
of the loss landscape, arguing that well generalizing minima have a larger volume in
parameter space (i.e., are more flat). Throughout this work, we use simplicity as a
proxy for generalization capabilities. Crucially, we present a novel way to think about
generalization capabilities of deep ReLU network using affine geometry.

In different low-dimensional settings, we provide evidence for the volume hypothesis
by showing the existence of a simplicity bias: exponentially complex networks are
unstable, as small changes to the network quickly lead to sub-exponential complexity.

To better understand the dual representation, we derive it for Telgarsky’s sawtooth
function in Chapter 8. Telgarsky achieves a number of affine regions which is expo-
nential in the depth of the network, close to the theoretical maximum. We show, by
randomizing the last layers of the sawtooth network, that his maximum is unstable,
concluding that the corresponding minimum in the loss-landscape is sharp. In par-
ticular, exponential complexity seems to require a careful choice of weights, which is
again evidence for the volume hypothesis.
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In Chapter 9, we replace numerical simulations with mathematical analysis, studying
how the complexity of a deterministic network, inspired by Telgarsky’s network and
conjectured to have exponential complexity, changes when appending a ReLU layer
with Gaussian weight and bias. This approach shows that the expected marginal gain,
which is the difference in the number of affine regions between the larger and smaller
networks, decreases as the size of the deterministic network increases. This observa-
tion further supports the volume hypothesis, demonstrating that the number of affine
regions is less stable the more complex the network is.

Finally, these results are illustrated in two additional toy settings. Formulated purely
in dual space, these problems are simplified heuristics, and assume the dual points
follow a known distribution, such as a Gaussian.

Future Work

We see two main tracks for future work. The first should deepen the understanding
of the dual representation of ReLU networks. The second should further explore the
volume hypothesis.

On the first track, Conjecture 7.1.10 states that, for a random network Q(P ) − Q(N),
the d-cells are almost surely the affine regions. A proof of this conjecture would allow
working with affine regions, not just activation regions or other refinements like is
often done in existing literature [14]. Further studies of the graph-structure inducing
U∗(P ⊠N)/ ∼ could allow approaching the problem from the perspective of graph
theory.

We would also be interested in better understanding how sensitive the dual represen-
tation is to small changes in the networks weights and biases. Potential results could
involve bounds on the displacement of points in P and N given a small change in the
weights in biases, or they could guide our understanding of how the upper convex
hull reacts to to small changes in the network.

As a final remark on the first track for future work, another interesting topic is the
size of the upper convex hulls of P and N . While these two sets typically grow expo-
nentially in depth, it is only U∗(P ) and U∗(N) that matter. Conjecture 5.1.20 predicts
that usually |U∗(P )| ≪ |P |, |U∗(N) ≪ |N |. Better understanding the size of the upper
convex hulls would also facilitate our understanding of the volume hypothesis.

This brings us to the second track. While we have gathered evidence for, and provided
a framework to think about, the volume hypothesis, we still lack a general theorem
which provides e.g. bounds for the distribution of the number of affine regions, given
a fixed architecture. For future work, it would be interesting to derive more general
results which rigorously establish the volume hypothesis.
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Appendix A

Helping Lemmas

This appendix contains a number of helpful lemmas.

Lemma A.0.1. Let X ∼ N (0, σ2
x) and Y ∼ N (0, σ2

y) be independent Gaussian random
variables. Then

P(0 ≤ X ≤ Y ) = P(0 ≥ X ≥ Y ) =
1

2π
arctan

(
σy
σx

)
.

Proof. Note that (X, Y ) is a multivariate Gaussian with density

p(X,Y )(x, y) =
1

2πσxσy
e
−
(

x2

2σ2
x
+ y2

2σ2
y

)
.

Apply a change of variables like x =
√
2rσx cos θ, y =

√
2rσy sin θ, which has Jacobian

|J | = 2rσxσy and
y ≥ x ≥ 0 ⇐⇒ σx

σy
≤ tan θ.

We can thus compute

P(0 < X < Y ) =
1

2πσxσy

∫
(x,y)∈R2

0<x<y

e
−
(

x2

2σ2
x
+ y2

2σ2
y

)
dxdy

=
1

π

π/2∫
arctan

(
σx
σy

) dθ
∞∫
0

dre−r2

=
1

4
− 1

2π
arctan

(
σx
σy

)
=

1

2π
arctan

(
σy
σx

)
,

where in the last step we used the identity arctan( 1
x
) = π

2
− arctan(x).

The following three Lemmas contain well known trigonometric identities:
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Lemma A.0.2. Given two angles α, β ∈ R, the following identities hold:

sinα + sin β = 2 sin

(
α + β

2

)
cos

(
α− β
2

)
cosα + cos β = 2 cos

(
α + β

2

)
cos

(
α− β
2

)
.

Lemma A.0.3. Given two angles α, β ∈ R, the following identities hold:

cosα− cos β = −2 sin
(
α + β

2

)
sin

(
α− β
2

)
sinα− sin β = 2 cos

(
α + β

2

)
sin

(
α− β
2

)
.

Lemma A.0.4. Given two angles α, β ∈ R, the following identity holds:

sin(α− β) = sinα cos β − cosα sin β.

Lemma A.0.5. Given two angles α, β ∈ R, the following identity holds:

sin(α) cos(β) =
1

2
[sin(α + β) + sin(α− β)]

Lemma A.0.6 ([37, Theorem 1]). For any a, d ∈ R, the following is true:

n−1∑
k=0

sin(a+ k · d) =
sin(n · d

2
)

sin(d
2
)
· sin

(
a+ (n− 1)

d

2

)
.
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